Suppr超能文献

支架蛋白对马达驱动的细胞器运输的整合调控。

Integrated regulation of motor-driven organelle transport by scaffolding proteins.

作者信息

Fu Meng-meng, Holzbaur Erika L F

机构信息

Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.

Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.

出版信息

Trends Cell Biol. 2014 Oct;24(10):564-74. doi: 10.1016/j.tcb.2014.05.002. Epub 2014 Jun 18.

Abstract

Intracellular trafficking pathways, including endocytosis, autophagy, and secretion, rely on directed organelle transport driven by the opposing microtubule motor proteins kinesin and dynein. Precise spatial and temporal targeting of vesicles and organelles requires the integrated regulation of these opposing motors, which are often bound simultaneously to the same cargo. Recent progress demonstrates that organelle-associated scaffolding proteins, including Milton/TRAKs (trafficking kinesin-binding protein), JIP1, JIP3 (JNK-interacting proteins), huntingtin, and Hook1, interact with molecular motors to coordinate activity and sustain unidirectional transport. Scaffolding proteins also bind to upstream regulatory proteins, including kinases and GTPases, to modulate transport in the cell. This integration of regulatory control with motor activity allows for cargo-specific changes in the transport or targeting of organelles in response to cues from the complex cellular environment.

摘要

细胞内运输途径,包括内吞作用、自噬和分泌,依赖于由相对的微管运动蛋白驱动蛋白和动力蛋白驱动的定向细胞器运输。囊泡和细胞器精确的空间和时间靶向需要对这些相对运动蛋白进行整合调节,这些运动蛋白通常同时结合到同一货物上。最近的研究进展表明,与细胞器相关的支架蛋白,包括米尔顿/运输相关驱动蛋白结合蛋白(TRAKs)、JIP1、JIP3(JNK相互作用蛋白)、亨廷顿蛋白和Hook1,与分子运动蛋白相互作用,以协调活性并维持单向运输。支架蛋白还与上游调节蛋白结合,包括激酶和GTP酶,以调节细胞内的运输。这种调节控制与运动活性的整合允许细胞器在运输或靶向方面针对来自复杂细胞环境的线索进行货物特异性变化。

相似文献

1
Integrated regulation of motor-driven organelle transport by scaffolding proteins.
Trends Cell Biol. 2014 Oct;24(10):564-74. doi: 10.1016/j.tcb.2014.05.002. Epub 2014 Jun 18.
3
Mitochondrial adaptor TRAK2 activates and functionally links opposing kinesin and dynein motors.
Nat Commun. 2021 Jul 28;12(1):4578. doi: 10.1038/s41467-021-24862-7.
4
Kinesin and dynein superfamily proteins and the mechanism of organelle transport.
Science. 1998 Jan 23;279(5350):519-26. doi: 10.1126/science.279.5350.519.
5
Hook Adaptors Induce Unidirectional Processive Motility by Enhancing the Dynein-Dynactin Interaction.
J Biol Chem. 2016 Aug 26;291(35):18239-51. doi: 10.1074/jbc.M116.738211. Epub 2016 Jun 30.
6
Dynactin is required for bidirectional organelle transport.
J Cell Biol. 2003 Feb 3;160(3):297-301. doi: 10.1083/jcb.200210066. Epub 2003 Jan 27.
7
Reconstitution of microtubule-based motility using cell extracts.
Methods Cell Biol. 2015;128:57-68. doi: 10.1016/bs.mcb.2015.02.002. Epub 2015 Apr 8.
8
A Combinatorial MAP Code Dictates Polarized Microtubule Transport.
Dev Cell. 2020 Apr 6;53(1):60-72.e4. doi: 10.1016/j.devcel.2020.01.029. Epub 2020 Feb 27.
9
Transport of fungal RAB11 secretory vesicles involves myosin-5, dynein/dynactin/p25, and kinesin-1 and is independent of kinesin-3.
Mol Biol Cell. 2017 Apr 1;28(7):947-961. doi: 10.1091/mbc.E16-08-0566. Epub 2017 Feb 16.
10
Engineered Tug-of-War Between Kinesin and Dynein Controls Direction of Microtubule Based Transport In Vivo.
Traffic. 2016 May;17(5):475-86. doi: 10.1111/tra.12385. Epub 2016 Mar 28.

引用本文的文献

2
Kinesin-1 Autoinhibition Tunes Cargo Transport by Motor Ensembles.
bioRxiv. 2025 Jun 3:2025.05.06.652443. doi: 10.1101/2025.05.06.652443.
3
Direct observation of importin α family member KPNA1 in axonal transport with or without a schizophrenia-related mutation.
J Biol Chem. 2025 Apr;301(4):108343. doi: 10.1016/j.jbc.2025.108343. Epub 2025 Feb 24.
4
Classical swine fever virus recruits ALIX and ESCRT-III to facilitate viral budding.
mBio. 2025 Apr 9;16(4):e0261824. doi: 10.1128/mbio.02618-24. Epub 2025 Feb 25.
5
Movement of the endoplasmic reticulum is driven by multiple classes of vesicles marked by Rab-GTPases.
Mol Biol Cell. 2025 Jan 1;36(1):ar9. doi: 10.1091/mbc.E24-04-0197. Epub 2024 Dec 4.
6
Optogenetic control of kinesin-1, -2, -3 and dynein reveals their specific roles in vesicular transport.
Cell Rep. 2024 Aug 27;43(8):114649. doi: 10.1016/j.celrep.2024.114649. Epub 2024 Aug 18.
7
Nlp-dependent ER-to-Golgi transport.
Int J Biol Sci. 2024 May 11;20(8):2881-2903. doi: 10.7150/ijbs.91792. eCollection 2024.
9
Autophagy initiation triggers p150-AP-2β interaction on the lysosomes and facilitates their transport.
Cell Mol Life Sci. 2024 May 17;81(1):218. doi: 10.1007/s00018-024-05256-6.
10
The Drosophila Nesprin-1 homolog MSP300 is required for muscle autophagy and proteostasis.
J Cell Sci. 2024 Jun 1;137(11). doi: 10.1242/jcs.262096. Epub 2024 Jun 10.

本文引用的文献

2
HookA is a novel dynein-early endosome linker critical for cargo movement in vivo.
J Cell Biol. 2014 Mar 17;204(6):1009-26. doi: 10.1083/jcb.201308009.
3
Hook is an adapter that coordinates kinesin-3 and dynein cargo attachment on early endosomes.
J Cell Biol. 2014 Mar 17;204(6):989-1007. doi: 10.1083/jcb.201309022.
6
Motor domain phosphorylation modulates kinesin-1 transport.
J Biol Chem. 2013 Nov 8;288(45):32612-32621. doi: 10.1074/jbc.M113.515510. Epub 2013 Sep 26.
7
Functions and mechanics of dynein motor proteins.
Nat Rev Mol Cell Biol. 2013 Nov;14(11):713-26. doi: 10.1038/nrm3667. Epub 2013 Sep 25.
8
JIP1 regulates the directionality of APP axonal transport by coordinating kinesin and dynein motors.
J Cell Biol. 2013 Aug 5;202(3):495-508. doi: 10.1083/jcb.201302078. Epub 2013 Jul 29.
9
Teamwork in microtubule motors.
Trends Cell Biol. 2013 Nov;23(11):575-82. doi: 10.1016/j.tcb.2013.06.003. Epub 2013 Jul 20.
10
Kinesin-1-syntaphilin coupling mediates activity-dependent regulation of axonal mitochondrial transport.
J Cell Biol. 2013 Jul 22;202(2):351-64. doi: 10.1083/jcb.201302040. Epub 2013 Jul 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验