Suppr超能文献

驱动蛋白与动力蛋白之间的人工拔河比赛控制体内基于微管的运输方向。

Engineered Tug-of-War Between Kinesin and Dynein Controls Direction of Microtubule Based Transport In Vivo.

作者信息

Rezaul Karim, Gupta Dipika, Semenova Irina, Ikeda Kazuho, Kraikivski Pavel, Yu Ji, Cowan Ann, Zaliapin Ilya, Rodionov Vladimir

机构信息

R.D.Berlin Center for Cell Analysis and Modeling, and Department of Cell Biology, UConn Health, 400 Farmington Avenue, Farmington, CT 06030-6406, USA.

Current address: Quantitative Biology Center, RIKEN, Osaka 565-0874, Japan.

出版信息

Traffic. 2016 May;17(5):475-86. doi: 10.1111/tra.12385. Epub 2016 Mar 28.

Abstract

Bidirectional transport of membrane organelles along microtubules (MTs) is driven by plus-end directed kinesins and minus-end directed dynein bound to the same cargo. Activities of opposing MT motors produce bidirectional movement of membrane organelles and cytoplasmic particles along MT transport tracks. Directionality of MT-based transport might be controlled by a protein complex that determines which motor type is active at any given moment of time, or determined by the outcome of a tug-of-war between MT motors dragging cargo organelles in opposite directions. However, evidence in support of each mechanisms of regulation is based mostly on the results of theoretical analyses or indirect experimental data. Here, we test whether the direction of movement of membrane organelles in vivo can be controlled by the tug-of-war between opposing MT motors alone, by attaching a large number of kinesin-1 motors to organelles transported by dynein to minus-ends of MTs. We find that recruitment of kinesin significantly reduces the length and velocity of minus-end-directed dynein-dependent MT runs, leading to a reversal of the overall direction of dynein-driven organelles in vivo. Therefore, in the absence of external regulators tug-of-war between opposing MT motors alone is sufficient to determine the directionality of MT transport in vivo.

摘要

膜性细胞器沿微管(MTs)的双向运输由结合在同一货物上的正端定向驱动蛋白和负端定向动力蛋白驱动。相反方向的微管马达活动促使膜性细胞器和细胞质颗粒沿微管运输轨道进行双向移动。基于微管的运输方向性可能由一个蛋白质复合体控制,该复合体决定在任何给定时刻哪种马达类型处于活跃状态,或者由微管马达向相反方向拖动货物细胞器时的拔河结果决定。然而,支持每种调节机制的证据大多基于理论分析结果或间接实验数据。在这里,我们通过将大量驱动蛋白-1马达附着到由动力蛋白向微管负端运输的细胞器上,来测试体内膜性细胞器的移动方向是否仅能由相反方向的微管马达之间的拔河来控制。我们发现,驱动蛋白的募集显著降低了依赖负端定向动力蛋白的微管运行的长度和速度,导致动力蛋白驱动的细胞器在体内的整体移动方向发生逆转。因此,在没有外部调节因子的情况下,仅相反方向的微管马达之间的拔河就足以决定体内微管运输的方向性。

相似文献

1
Engineered Tug-of-War Between Kinesin and Dynein Controls Direction of Microtubule Based Transport In Vivo.
Traffic. 2016 May;17(5):475-86. doi: 10.1111/tra.12385. Epub 2016 Mar 28.
3
Bidirectional transport of organelles: unity and struggle of opposing motors.
Cell Biol Int. 2012 Jan;36(1):1-6. doi: 10.1042/CBI20110413.
5
Tau directs intracellular trafficking by regulating the forces exerted by kinesin and dynein teams.
Traffic. 2018 Feb;19(2):111-121. doi: 10.1111/tra.12537. Epub 2017 Dec 5.
6
Bidirectional cargo transport: moving beyond tug of war.
Nat Rev Mol Cell Biol. 2014 Sep;15(9):615-28. doi: 10.1038/nrm3853. Epub 2014 Aug 16.
8
Polarity sorting of axonal microtubules: a computational study.
Mol Biol Cell. 2017 Nov 7;28(23):3271-3285. doi: 10.1091/mbc.E17-06-0380. Epub 2017 Oct 4.
9
CK1 activates minus-end-directed transport of membrane organelles along microtubules.
Mol Biol Cell. 2011 Apr 15;22(8):1321-9. doi: 10.1091/mbc.E10-09-0741. Epub 2011 Feb 9.
10
Modeling bidirectional transport of quantum dot nanoparticles in membrane nanotubes.
Math Biosci. 2011 Aug;232(2):101-9. doi: 10.1016/j.mbs.2011.04.008. Epub 2011 May 15.

引用本文的文献

1
Cargo specificity, regulation, and therapeutic potential of cytoplasmic dynein.
Exp Mol Med. 2024 Apr;56(4):827-835. doi: 10.1038/s12276-024-01200-7. Epub 2024 Apr 1.
2
Re-examining the evidence that ivermectin induces a melanoma-like state in Xenopus embryos.
Bioessays. 2024 Jan;46(1):e2300143. doi: 10.1002/bies.202300143. Epub 2023 Nov 20.
5
Centrosome amplification fine tunes tubulin acetylation to differentially control intracellular organization.
EMBO J. 2023 Aug 15;42(16):e112812. doi: 10.15252/embj.2022112812. Epub 2023 Jul 5.
8
Phosphoregulation of Kinesins Involved in Long-Range Intracellular Transport.
Front Cell Dev Biol. 2022 Jun 3;10:873164. doi: 10.3389/fcell.2022.873164. eCollection 2022.
9
Dynein regulates Kv7.4 channel trafficking from the cell membrane.
J Gen Physiol. 2021 Mar 1;153(3). doi: 10.1085/jgp.202012760.
10
Different motilities of microtubules driven by kinesin-1 and kinesin-14 motors patterned on nanopillars.
Sci Adv. 2020 Jan 22;6(4):eaax7413. doi: 10.1126/sciadv.aax7413. eCollection 2020 Jan.

本文引用的文献

1
The Mechanochemical Cycle of Mammalian Kinesin-2 KIF3A/B under Load.
Curr Biol. 2015 May 4;25(9):1166-75. doi: 10.1016/j.cub.2015.03.013. Epub 2015 Apr 9.
2
Optogenetic control of organelle transport and positioning.
Nature. 2015 Feb 5;518(7537):111-114. doi: 10.1038/nature14128. Epub 2015 Jan 7.
4
Bidirectional cargo transport: moving beyond tug of war.
Nat Rev Mol Cell Biol. 2014 Sep;15(9):615-28. doi: 10.1038/nrm3853. Epub 2014 Aug 16.
5
Integrated regulation of motor-driven organelle transport by scaffolding proteins.
Trends Cell Biol. 2014 Oct;24(10):564-74. doi: 10.1016/j.tcb.2014.05.002. Epub 2014 Jun 18.
6
Single-molecule fluorescence and in vivo optical traps: how multiple dyneins and kinesins interact.
Chem Rev. 2014 Mar 26;114(6):3335-52. doi: 10.1021/cr4005555. Epub 2014 Jan 23.
7
Myosin-V opposes microtubule-based cargo transport and drives directional motility on cortical actin.
Curr Biol. 2013 May 6;23(9):828-34. doi: 10.1016/j.cub.2013.03.068. Epub 2013 Apr 18.
8
The journey of the organelle: teamwork and regulation in intracellular transport.
Curr Opin Cell Biol. 2013 Aug;25(4):483-8. doi: 10.1016/j.ceb.2013.02.018. Epub 2013 Mar 17.
9
Molecular adaptations allow dynein to generate large collective forces inside cells.
Cell. 2013 Jan 17;152(1-2):172-82. doi: 10.1016/j.cell.2012.11.044.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验