Suppr超能文献

糖尿病性神经病变:发病机制、新兴治疗方法及亚型

Diabetic neuropathy: mechanisms, emerging treatments, and subtypes.

作者信息

Albers James W, Pop-Busui Rodica

机构信息

Neuromuscular Section, Department of Neurology, University of Michigan Health System, 1C325 University Hospital, 1500 East Medical Center Drive, Ann Arbor, MI, 48109-0032, USA,

出版信息

Curr Neurol Neurosci Rep. 2014 Aug;14(8):473. doi: 10.1007/s11910-014-0473-5.

Abstract

Diabetic neuropathies (DNs) differ in clinical course, distribution, fiber involvement (type and size), and pathophysiology, the most typical type being a length-dependent distal symmetric polyneuropathy (DSP) with differing degrees of autonomic involvement. The pathogenesis of diabetic DSP is multifactorial, including increased mitochondrial production of free radicals due to hyperglycemia-induced oxidative stress. Mechanisms that impact neuronal activity, mitochondrial function, membrane permeability, and endothelial function include formation of advanced glycosylation end products, activation of polyol aldose reductase signaling, activation of poly(ADP ribose) polymerase, and altered function of the Na(+)/K(+)-ATPase pump. Hyperglycemia-induced endoplasmic reticulum stress triggers several neuronal apoptotic processes. Additional mechanisms include impaired nerve perfusion, dyslipidemia, altered redox status, low-grade inflammation, and perturbation of calcium balance. Successful therapies require an integrated approach targeting these mechanisms. Intensive glycemic control is essential but is insufficient to prevent onset or progression of DSP, and disease-modifying treatments for DSP have been disappointing. Atypical forms of DN include subacute-onset sensory (symmetric) or motor (asymmetric) predominant conditions that are frequently painful but generally self-limited. DNs are a major cause of disability, associated with reduced quality of life and increased mortality.

摘要

糖尿病性神经病变(DNs)在临床病程、分布、神经纤维受累情况(类型和大小)及病理生理学方面存在差异,最典型的类型是长度依赖性远端对称性多发性神经病变(DSP),伴有不同程度的自主神经受累。糖尿病性DSP的发病机制是多因素的,包括高血糖诱导的氧化应激导致线粒体自由基产生增加。影响神经元活动、线粒体功能、膜通透性和内皮功能的机制包括晚期糖基化终末产物的形成、多元醇醛糖还原酶信号通路的激活、聚(ADP核糖)聚合酶的激活以及钠钾ATP酶泵功能的改变。高血糖诱导的内质网应激触发多种神经元凋亡过程。其他机制包括神经灌注受损、血脂异常、氧化还原状态改变、低度炎症以及钙平衡紊乱。成功的治疗需要针对这些机制采取综合方法。强化血糖控制至关重要,但不足以预防DSP的发生或进展,而且针对DSP的疾病修饰治疗效果一直令人失望。非典型DN包括亚急性起病的以感觉(对称性)或运动(不对称性)为主的情况,通常疼痛但一般为自限性。DNs是导致残疾的主要原因,与生活质量下降和死亡率增加相关。

相似文献

1
Diabetic neuropathy: mechanisms, emerging treatments, and subtypes.
Curr Neurol Neurosci Rep. 2014 Aug;14(8):473. doi: 10.1007/s11910-014-0473-5.
2
[Diabetic somatic polyneuropathy. Pathogenesis, clinical manifestations and therapeutic concepts].
Fortschr Neurol Psychiatr. 2000 Jun;68(6):278-88. doi: 10.1055/s-2000-11535.
3
Inflammation as a Therapeutic Target for Diabetic Neuropathies.
Curr Diab Rep. 2016 Mar;16(3):29. doi: 10.1007/s11892-016-0727-5.
4
[Pathogenic Mechanisms of Diabetic Neuropathy].
Brain Nerve. 2024 May;76(5):671-680. doi: 10.11477/mf.1416202658.
6
Emerging drugs for diabetic neuropathy.
Expert Opin Emerg Drugs. 2010 Dec;15(4):661-83. doi: 10.1517/14728214.2010.512610. Epub 2010 Aug 27.
7
Role for poly(ADP-ribose) polymerase activation in diabetic nephropathy, neuropathy and retinopathy.
Curr Vasc Pharmacol. 2005 Jul;3(3):267-83. doi: 10.2174/1570161054368634.
10
Diabetic neuropathy in elderly patients. What can be done?
Drugs Aging. 1996 Jun;8(6):416-29. doi: 10.2165/00002512-199608060-00003.

引用本文的文献

1
Review of nonpharmacological interventions for delaying the effects of cerebral neuropathy caused by diabetes.
Front Endocrinol (Lausanne). 2025 Aug 27;16:1621448. doi: 10.3389/fendo.2025.1621448. eCollection 2025.
2
Long-lasting and fast methylglyoxal-scavenging peptide CycK(Myr)RE alleviates chronic pain in type 2 diabetic mice.
Pain Rep. 2025 Aug 12;10(5):e1312. doi: 10.1097/PR9.0000000000001312. eCollection 2025 Oct.
3
Probiotics as Antioxidant Strategy for Managing Diabetes Mellitus and Its Complications.
Antioxidants (Basel). 2025 Jun 22;14(7):767. doi: 10.3390/antiox14070767.
4
Metformin-induced vitamin B12 deficiency: An underdiagnosed cause of diabetic neuropathy.
World J Diabetes. 2025 Jul 15;16(7):107514. doi: 10.4239/wjd.v16.i7.107514.
5
Mitochondrial dynamics in diabetic peripheral neuropathy: Pathogenesis, progression, and therapeutic approaches.
Medicine (Baltimore). 2025 Jul 18;104(29):e42748. doi: 10.1097/MD.0000000000042748.
7
From receptor to response: dissecting the TLR4 pathway in diabetic neuropathy.
Inflammopharmacology. 2025 May 10. doi: 10.1007/s10787-025-01774-2.
8
Diabetic neuropathy: cutting-edge research and future directions.
Signal Transduct Target Ther. 2025 Apr 25;10(1):132. doi: 10.1038/s41392-025-02175-1.
9
Lactoferrin-derived peptide PXL01 impacts nerve regeneration after sciatic nerve reconstruction in healthy and diabetic rats.
Front Cell Dev Biol. 2025 Apr 7;13:1565285. doi: 10.3389/fcell.2025.1565285. eCollection 2025.

本文引用的文献

1
Peroxynitrite and protein nitration in the pathogenesis of diabetic peripheral neuropathy.
Diabetes Metab Res Rev. 2014 Nov;30(8):669-78. doi: 10.1002/dmrr.2549.
2
Proficiency of nerve conduction using standard methods and reference values (Cl. NPhys Trial 4).
Muscle Nerve. 2014 Dec;50(6):900-8. doi: 10.1002/mus.24243. Epub 2014 Oct 30.
3
ER stress in diabetic peripheral neuropathy: A new therapeutic target.
Antioxid Redox Signal. 2014 Aug 1;21(4):621-33. doi: 10.1089/ars.2013.5807. Epub 2014 Feb 27.
5
Heat shock protein 70 is necessary to improve mitochondrial bioenergetics and reverse diabetic sensory neuropathy following KU-32 therapy.
J Pharmacol Exp Ther. 2014 Feb;348(2):281-92. doi: 10.1124/jpet.113.210435. Epub 2013 Nov 21.
6
A trial of proficiency of nerve conduction: greater standardization still needed.
Muscle Nerve. 2013 Sep;48(3):369-74. doi: 10.1002/mus.23765. Epub 2013 Jul 17.
9
Whither pathogenetic treatments for diabetic polyneuropathy?
Diabetes Metab Res Rev. 2013 Jul;29(5):327-33. doi: 10.1002/dmrr.2397.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验