Suppr超能文献

分子通路:癌症中的髓系细胞协同作用

Molecular pathways: myeloid complicity in cancer.

作者信息

Stromnes Ingunn M, Greenberg Philip D, Hingorani Sunil R

机构信息

Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington. Department of Immunology, University of Washington, Seattle, Washington.

Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington. Department of Immunology, University of Washington, Seattle, Washington. Division of Medical Oncology, Department of Medicine, University of Washington School of Medicine, Seattle, Washington.

出版信息

Clin Cancer Res. 2014 Oct 15;20(20):5157-70. doi: 10.1158/1078-0432.CCR-13-0866. Epub 2014 Jul 21.

Abstract

Cancer-induced inflammation results in accumulation of myeloid cells. These myeloid cells include progenitors and progeny of monocytes, granulocytes, macrophages, and dendritic cells. It has become increasingly evident that tumor-dependent factors can condition myeloid cells toward an immunosuppressive and protumorigenic phenotype. Thus, myeloid cells are not simply bystanders in malignancy or barometers of disease burden. Reflecting their dynamic and plastic nature, myeloid cells manifest a continuum of cellular differentiation and are intimately involved at all stages of neoplastic progression. They can promote tumorigenesis through both immune-dependent and -independent mechanisms and can dictate response to therapies. A greater understanding of the inherent plasticity and relationships among myeloid subsets is needed to inform therapeutic targeting. New clinical trials are being designed to modulate the activities of myeloid cells in cancer, which may be essential to maximize the efficacy of both conventional cytotoxic and immune-based therapies for solid tumors. Clin Cancer Res; 20(20); 5157-70. ©2014 AACR.

摘要

癌症诱导的炎症会导致髓样细胞积聚。这些髓样细胞包括单核细胞、粒细胞、巨噬细胞和树突状细胞的祖细胞及其后代。越来越明显的是,肿瘤相关因子可使髓样细胞转变为具有免疫抑制和促肿瘤表型。因此,髓样细胞并非仅仅是恶性肿瘤中的旁观者或疾病负担的晴雨表。反映出它们动态和可塑性的本质,髓样细胞表现出连续的细胞分化,并在肿瘤进展的各个阶段都密切参与其中。它们可通过免疫依赖和非依赖机制促进肿瘤发生,并可决定对治疗的反应。需要更深入了解髓样亚群之间固有的可塑性和关系,以为治疗靶向提供依据。正在设计新的临床试验来调节癌症中髓样细胞的活性,这对于最大化传统细胞毒性疗法和基于免疫的实体瘤疗法的疗效可能至关重要。《临床癌症研究》;20(20);5157 - 70。©2014美国癌症研究协会。

相似文献

1
Molecular pathways: myeloid complicity in cancer.
Clin Cancer Res. 2014 Oct 15;20(20):5157-70. doi: 10.1158/1078-0432.CCR-13-0866. Epub 2014 Jul 21.
2
Relevance of Interferon Regulatory Factor-8 Expression in Myeloid-Tumor Interactions.
J Interferon Cytokine Res. 2016 Jul;36(7):442-53. doi: 10.1089/jir.2015.0174.
3
Notch Signaling in Myeloid Cells as a Regulator of Tumor Immune Responses.
Front Immunol. 2018 Jun 4;9:1288. doi: 10.3389/fimmu.2018.01288. eCollection 2018.
4
Harnessing immune checkpoints in myeloid lineage cells for cancer immunotherapy.
Cancer Lett. 2019 Jun 28;452:51-58. doi: 10.1016/j.canlet.2019.03.018. Epub 2019 Mar 22.
6
Overcoming Therapeutic Resistance by Targeting Cancer Inflammation.
Am Soc Clin Oncol Educ Book. 2016;35:e168-73. doi: 10.1200/EDBK_158948.
7
Molecular pathways: tumor-infiltrating myeloid cells and reactive oxygen species in regulation of tumor microenvironment.
Clin Cancer Res. 2012 Sep 15;18(18):4877-82. doi: 10.1158/1078-0432.CCR-11-2939. Epub 2012 Jun 19.
8
Myeloid Cells as Targets for Therapy in Solid Tumors.
Cancer J. 2015 Jul-Aug;21(4):343-50. doi: 10.1097/PPO.0000000000000132.
9
microRNAs Shape Myeloid Cell-Mediated Resistance to Cancer Immunotherapy.
Front Immunol. 2020 Jul 22;11:1214. doi: 10.3389/fimmu.2020.01214. eCollection 2020.
10
Interactions among myeloid regulatory cells in cancer.
Cancer Immunol Immunother. 2019 Apr;68(4):645-660. doi: 10.1007/s00262-018-2200-6. Epub 2018 Jul 12.

引用本文的文献

1
Astrocyte involvement in brain metastasis: from biological mechanisms to therapeutic strategies.
Cancer Metastasis Rev. 2025 Jul 15;44(3):60. doi: 10.1007/s10555-025-10276-0.
2
Insights into CSF-1R Expression in the Tumor Microenvironment.
Biomedicines. 2024 Oct 18;12(10):2381. doi: 10.3390/biomedicines12102381.
5
Epithelial and stromal co-evolution and complicity in pancreatic cancer.
Nat Rev Cancer. 2023 Feb;23(2):57-77. doi: 10.1038/s41568-022-00530-w. Epub 2022 Nov 29.
8
GM-CSF Nitration Is a New Driver of Myeloid Suppressor Cell Activity in Tumors.
Front Immunol. 2021 Oct 5;12:718098. doi: 10.3389/fimmu.2021.718098. eCollection 2021.
9
Tumor Immune Microenvironment Characteristics and Their Prognostic Value in Non-Small-Cell Lung Cancer.
Front Oncol. 2021 Mar 3;11:634059. doi: 10.3389/fonc.2021.634059. eCollection 2021.
10
Advantages of targeting the tumor immune microenvironment over blocking immune checkpoint in cancer immunotherapy.
Signal Transduct Target Ther. 2021 Feb 20;6(1):72. doi: 10.1038/s41392-020-00449-4.

本文引用的文献

1
Targeting immune suppression with PDE5 inhibition in end-stage multiple myeloma.
Cancer Immunol Res. 2014 Aug;2(8):725-31. doi: 10.1158/2326-6066.CIR-13-0213. Epub 2014 Mar 28.
3
Disruption of CXCR2-mediated MDSC tumor trafficking enhances anti-PD1 efficacy.
Sci Transl Med. 2014 May 21;6(237):237ra67. doi: 10.1126/scitranslmed.3007974.
5
γδT17 cells promote the accumulation and expansion of myeloid-derived suppressor cells in human colorectal cancer.
Immunity. 2014 May 15;40(5):785-800. doi: 10.1016/j.immuni.2014.03.013. Epub 2014 May 8.
6
Phosphatidylserine-targeting antibody induces M1 macrophage polarization and promotes myeloid-derived suppressor cell differentiation.
Cancer Immunol Res. 2013 Oct;1(4):256-68. doi: 10.1158/2326-6066.CIR-13-0073. Epub 2013 Aug 19.
7
8
Targeted depletion of an MDSC subset unmasks pancreatic ductal adenocarcinoma to adaptive immunity.
Gut. 2014 Nov;63(11):1769-81. doi: 10.1136/gutjnl-2013-306271. Epub 2014 Feb 20.
10
Interleukin 17 receptor A modulates monocyte subsets and macrophage generation in vivo.
PLoS One. 2014 Jan 15;9(1):e85461. doi: 10.1371/journal.pone.0085461. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验