Suppr超能文献

透明质酸酶在癌症转移和治疗中的新作用。

Emerging roles for hyaluronidase in cancer metastasis and therapy.

作者信息

McAtee Caitlin O, Barycki Joseph J, Simpson Melanie A

机构信息

Department of Biochemistry, University of Nebraska, Lincoln, Nebraska, USA.

Department of Biochemistry, University of Nebraska, Lincoln, Nebraska, USA.

出版信息

Adv Cancer Res. 2014;123:1-34. doi: 10.1016/B978-0-12-800092-2.00001-0.

Abstract

Hyaluronidases are a family of five human enzymes that have been differentially implicated in the progression of many solid tumor types, both clinically and in functional studies. Advances in the past 5 years have clarified many apparent contradictions: (1) by demonstrating that specific hyaluronidases have alternative substrates to hyaluronan (HA) or do not exhibit any enzymatic activity, (2) that high-molecular weight HA polymers elicit signaling effects that are opposite those of the hyaluronidase-digested HA oligomers, and (3) that it is actually the combined overexpression of HA synthesizing enzymes with hyaluronidases that confers tumorigenic potential. This review examines the literature supporting these conclusions and discusses novel mechanisms by which hyaluronidases impact invasive tumor cell processes. In addition, a detailed structural and functional comparison of the hyaluronidases is presented with insights into substrate selectivity and potential for therapeutic targeting. Finally, technological advances in targeting hyaluronidase for tumor imaging and cancer therapy are summarized.

摘要

透明质酸酶是一个由五种人类酶组成的家族,在许多实体瘤类型的进展过程中,无论是在临床研究还是功能研究中,都有着不同程度的牵连。过去五年的研究进展澄清了许多明显的矛盾之处:(1)通过证明特定的透明质酸酶具有除透明质酸(HA)之外的其他底物,或者不表现出任何酶活性;(2)高分子量HA聚合物引发的信号效应与透明质酸酶消化后的HA寡聚体相反;(3)实际上是HA合成酶与透明质酸酶的联合过度表达赋予了肿瘤发生潜能。本综述考察了支持这些结论的文献,并讨论了透明质酸酶影响侵袭性肿瘤细胞进程的新机制。此外,还对透明质酸酶进行了详细的结构和功能比较,深入探讨了底物选择性和治疗靶向潜力。最后,总结了针对透明质酸酶进行肿瘤成像和癌症治疗的技术进展。

相似文献

1
Emerging roles for hyaluronidase in cancer metastasis and therapy.
Adv Cancer Res. 2014;123:1-34. doi: 10.1016/B978-0-12-800092-2.00001-0.
2
Hyaluronan metabolism: a major paradox in cancer biology.
Pathol Biol (Paris). 2005 Sep;53(7):372-82. doi: 10.1016/j.patbio.2004.12.021. Epub 2005 Jan 19.
3
Hyaluronidases in cancer biology.
Semin Cancer Biol. 2008 Aug;18(4):275-80. doi: 10.1016/j.semcancer.2008.03.017. Epub 2008 Apr 1.
5
Hyaluronidases in tissue invasion.
Invasion Metastasis. 1997;17(6):297-311.
6
Hyaluronidase inhibitor delphinidin inhibits cancer metastasis.
Sci Rep. 2024 Jun 28;14(1):14958. doi: 10.1038/s41598-024-64924-6.
7
Isoenzyme-specific differences in the degradation of hyaluronic acid by mammalian-type hyaluronidases.
Glycoconj J. 2008 Feb;25(2):101-9. doi: 10.1007/s10719-007-9058-8. Epub 2007 Jul 10.
9
The magic glue hyaluronan and its eraser hyaluronidase: a biological overview.
Life Sci. 2007 May 1;80(21):1921-43. doi: 10.1016/j.lfs.2007.02.037. Epub 2007 Mar 6.
10
Enzymatic Production of Low-Molecular-Weight Hyaluronan and Its Oligosaccharides: A Review and Prospects.
J Agric Food Chem. 2022 Nov 9;70(44):14129-14139. doi: 10.1021/acs.jafc.2c05709. Epub 2022 Oct 27.

引用本文的文献

1
Responsive biomaterials for therapeutic strategies of hepatocellular carcinoma.
Front Bioeng Biotechnol. 2025 Aug 20;13:1673134. doi: 10.3389/fbioe.2025.1673134. eCollection 2025.
2
Hyaluronidase: structure, mechanism of action, diseases and therapeutic targets.
Mol Biomed. 2025 Jul 12;6(1):50. doi: 10.1186/s43556-025-00299-y.
3
Uncovering Hyaluronidase Activity Using Hyaluronan Zymography in Biological Samples.
Methods Mol Biol. 2025;2917:143-150. doi: 10.1007/978-1-0716-4478-2_13.
4
Hyaluronan network remodeling by ZEB1 and ITIH2 enhances the motility and invasiveness of cancer cells.
J Clin Invest. 2025 Apr 3;135(11). doi: 10.1172/JCI180570. eCollection 2025 Jun 2.
5
Impacts of Hyaluronan on Extracellular Vesicle Production and Signaling.
Cells. 2025 Jan 18;14(2):139. doi: 10.3390/cells14020139.
6
Tumor microenvironment-responsive nanoformulations for breast cancer.
Discov Nano. 2024 Dec 21;19(1):212. doi: 10.1186/s11671-024-04122-5.
7
Lutein derived from Xenostegia tridentata exhibits anticancer activities against A549 lung cancer cells via hyaluronidase inhibition.
PLoS One. 2024 Dec 16;19(12):e0315570. doi: 10.1371/journal.pone.0315570. eCollection 2024.
8
Distinct chemical structures inhibit the CEMIP hyaluronidase and promote oligodendrocyte progenitor cell maturation.
J Biol Chem. 2024 Dec;300(12):107916. doi: 10.1016/j.jbc.2024.107916. Epub 2024 Oct 24.

本文引用的文献

2
Hyaluronated nanoparticles with pH- and enzyme-responsive drug release properties.
Colloids Surf B Biointerfaces. 2014 Apr 1;116:359-64. doi: 10.1016/j.colsurfb.2014.01.017. Epub 2014 Jan 23.
3
Subcellular trafficking and activity of Hyal-1 and its processed forms in murine macrophages.
Traffic. 2014 May;15(5):500-15. doi: 10.1111/tra.12162. Epub 2014 Mar 11.
4
Differentiation of tumour-promoting stromal myofibroblasts by cancer exosomes.
Oncogene. 2015 Jan 15;34(3):290-302. doi: 10.1038/onc.2013.560. Epub 2014 Jan 20.
5
Stimulation of TLR4 by LMW-HA induces metastasis in human papillary thyroid carcinoma through CXCR7.
Clin Dev Immunol. 2013;2013:712561. doi: 10.1155/2013/712561. Epub 2013 Dec 2.
6
Prognostic impact of hyaluronan and its regulators in pancreatic ductal adenocarcinoma.
PLoS One. 2013 Nov 11;8(11):e80765. doi: 10.1371/journal.pone.0080765. eCollection 2013.
7
Host matrix modulation by tumor exosomes promotes motility and invasiveness.
Neoplasia. 2013 Aug;15(8):875-87. doi: 10.1593/neo.13786.
8
High-molecular-mass hyaluronan mediates the cancer resistance of the naked mole rat.
Nature. 2013 Jul 18;499(7458):346-9. doi: 10.1038/nature12234. Epub 2013 Jun 19.
9
Hyaluronidases and their inhibitors in the serum of colorectal carcinoma patients.
J Pharm Biomed Anal. 2013 Sep;83:299-304. doi: 10.1016/j.jpba.2013.05.037. Epub 2013 May 28.
10
Hyaluronan production enhances shedding of plasma membrane-derived microvesicles.
Exp Cell Res. 2013 Aug 1;319(13):2006-2018. doi: 10.1016/j.yexcr.2013.05.021. Epub 2013 Jun 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验