Suppr超能文献

用于癌症研究和药物评估的三维体外肿瘤模型。

Three-dimensional in vitro tumor models for cancer research and drug evaluation.

作者信息

Xu Xian, Farach-Carson Mary C, Jia Xinqiao

机构信息

Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA.

Departments of Biochemistry and Cell Biology and Bioengineering, Rice University, Houston, TX 77251, USA; Center for Translational Cancer Research, University of Delaware, Newark, DE 19716, USA.

出版信息

Biotechnol Adv. 2014 Nov 15;32(7):1256-1268. doi: 10.1016/j.biotechadv.2014.07.009. Epub 2014 Aug 10.

Abstract

Cancer occurs when cells acquire genomic instability and inflammation, produce abnormal levels of epigenetic factors/proteins and tumor suppressors, reprogram the energy metabolism and evade immune destruction, leading to the disruption of cell cycle/normal growth. An early event in carcinogenesis is loss of polarity and detachment from the natural basement membrane, allowing cells to form distinct three-dimensional (3D) structures that interact with each other and with the surrounding microenvironment. Although valuable information has been accumulated from traditional in vitro studies in which cells are grown on flat and hard plastic surfaces (2D culture), this culture condition does not reflect the essential features of tumor tissues. Further, fundamental understanding of cancer metastasis cannot be obtained readily from 2D studies because they lack the complex and dynamic cell-cell communications and cell-matrix interactions that occur during cancer metastasis. These shortcomings, along with lack of spatial depth and cell connectivity, limit the applicability of 2D cultures to accurate testing of pharmacologically active compounds, free or sequestered in nanoparticles. To recapitulate features of native tumor microenvironments, various biomimetic 3D tumor models have been developed to incorporate cancer and stromal cells, relevant matrix components, and biochemical and biophysical cues, into one spatially and temporally integrated system. In this article, we review recent advances in creating 3D tumor models employing tissue engineering principles. We then evaluate the utilities of these novel models for the testing of anticancer drugs and their delivery systems. We highlight the profound differences in responses from 3D in vitro tumors and conventional monolayer cultures. Overall, strategic integration of biological principles and engineering approaches will both improve understanding of tumor progression and invasion and support discovery of more personalized first line treatments for cancer patients.

摘要

当细胞获得基因组不稳定性和炎症,产生异常水平的表观遗传因子/蛋白质和肿瘤抑制因子,重新编程能量代谢并逃避免疫破坏,导致细胞周期/正常生长紊乱时,癌症就会发生。致癌作用的早期事件是极性丧失和与天然基底膜脱离,使细胞能够形成相互作用并与周围微环境相互作用的独特三维(3D)结构。尽管从传统的体外研究(细胞在平坦坚硬的塑料表面上生长,即二维培养)中已经积累了有价值的信息,但这种培养条件并不能反映肿瘤组织的基本特征。此外,二维研究无法轻易获得对癌症转移的基本理解,因为它们缺乏癌症转移过程中发生的复杂动态的细胞间通讯和细胞与基质的相互作用。这些缺点,加上缺乏空间深度和细胞连通性,限制了二维培养在准确测试游离或包裹在纳米颗粒中的药理活性化合物方面的适用性。为了重现天然肿瘤微环境的特征,已经开发了各种仿生三维肿瘤模型,将癌细胞和基质细胞、相关基质成分以及生化和生物物理线索整合到一个时空整合的系统中。在本文中,我们回顾了利用组织工程原理创建三维肿瘤模型的最新进展。然后,我们评估这些新型模型在抗癌药物及其递送系统测试中的效用。我们强调了三维体外肿瘤和传统单层培养反应的深刻差异。总体而言,生物学原理和工程方法的战略整合将既有助于增进对肿瘤进展和侵袭的理解,又能支持为癌症患者发现更个性化的一线治疗方法。

相似文献

1
Three-dimensional in vitro tumor models for cancer research and drug evaluation.
Biotechnol Adv. 2014 Nov 15;32(7):1256-1268. doi: 10.1016/j.biotechadv.2014.07.009. Epub 2014 Aug 10.
2
Biofabrication of a three-dimensional liver micro-organ as an in vitro drug metabolism model.
Biofabrication. 2010 Dec;2(4):045004. doi: 10.1088/1758-5082/2/4/045004. Epub 2010 Nov 15.
3
A versatile 3D tissue matrix scaffold system for tumor modeling and drug screening.
Sci Adv. 2017 Sep 13;3(9):e1700764. doi: 10.1126/sciadv.1700764. eCollection 2017 Sep.
4
3D modeling in cancer studies.
Hum Cell. 2022 Jan;35(1):23-36. doi: 10.1007/s13577-021-00642-9. Epub 2021 Nov 10.
5
Breast cancer models: Engineering the tumor microenvironment.
Acta Biomater. 2020 Apr 1;106:1-21. doi: 10.1016/j.actbio.2020.02.006. Epub 2020 Feb 9.
6
A three-dimensional spheroidal cancer model based on PEG-fibrinogen hydrogel microspheres.
Biomaterials. 2017 Jan;115:141-154. doi: 10.1016/j.biomaterials.2016.10.052. Epub 2016 Nov 1.
7
Heralding a new paradigm in 3D tumor modeling.
Biomaterials. 2016 Nov;108:197-213. doi: 10.1016/j.biomaterials.2016.08.052. Epub 2016 Sep 2.
9
Multi-parametric hydrogels support 3D in vitro bioengineered microenvironment models of tumour angiogenesis.
Biomaterials. 2015;53:609-20. doi: 10.1016/j.biomaterials.2015.02.124. Epub 2015 Mar 24.

引用本文的文献

1
Three-dimensional cell sheet model improves prediction accuracy of osteogenic potential for biodegradable magnesium-based metals.
Bioact Mater. 2025 Aug 23;54:291-310. doi: 10.1016/j.bioactmat.2025.08.013. eCollection 2025 Dec.
3
Patient-derived xenograft model: Applications and challenges in liver cancer.
Chin Med J (Engl). 2025 Jun 5;138(11):1313-1323. doi: 10.1097/CM9.0000000000003480. Epub 2025 May 19.
5
Exploring Mechanical Features of 3D Head and Neck Cancer Models.
J Funct Biomater. 2025 Feb 20;16(3):74. doi: 10.3390/jfb16030074.
6
Antagonizing the S1P-S1P3 Axis as a Promising Anti-Angiogenic Strategy.
Metabolites. 2025 Mar 5;15(3):178. doi: 10.3390/metabo15030178.
7
In vitro cellular interaction of drug-loaded liposomes with 2D and 3D cell culture of U87-MG cell line.
PLoS One. 2025 Mar 25;20(3):e0320374. doi: 10.1371/journal.pone.0320374. eCollection 2025.
9
Functional biomaterials for biomimetic 3D in vitro tumor microenvironment modeling.
In Vitro Model. 2023 Jan 27;2(1-2):1-23. doi: 10.1007/s44164-023-00043-2. eCollection 2023 Apr.
10
Peptide-coated DNA nanostructures as a platform for control of lysosomal function in cells.
Chem Eng J. 2024 Oct 15;498. doi: 10.1016/j.cej.2024.155633. Epub 2024 Sep 12.

本文引用的文献

1
Soft biological materials and their impact on cell function.
Soft Matter. 2007 Feb 14;3(3):299-306. doi: 10.1039/b610522j.
2
Hydrogel-based 3D model of patient-derived prostate xenograft tumors suitable for drug screening.
Mol Pharm. 2014 Jul 7;11(7):2040-50. doi: 10.1021/mp500085p. Epub 2014 Apr 29.
3
Delivery of molecular and cellular medicine to solid tumors.
Adv Drug Deliv Rev. 2012 Dec 1;64(Suppl):353-365. doi: 10.1016/j.addr.2012.09.011.
4
An improved method for the preparation of type I collagen from skin.
J Vis Exp. 2014 Jan 21(83):e51011. doi: 10.3791/51011.
5
Dynamic vibration cooperates with connective tissue growth factor to modulate stem cell behaviors.
Tissue Eng Part A. 2014 Jul;20(13-14):1922-34. doi: 10.1089/ten.TEA.2013.0496. Epub 2014 Feb 27.
6
A hydrogel-based tumor model for the evaluation of nanoparticle-based cancer therapeutics.
Biomaterials. 2014 Mar;35(10):3319-30. doi: 10.1016/j.biomaterials.2013.12.080. Epub 2014 Jan 18.
7
A method for estimating the oxygen consumption rate in multicellular tumour spheroids.
J R Soc Interface. 2014 Jan 15;11(92):20131124. doi: 10.1098/rsif.2013.1124. Print 2014 Mar 6.
8
Hyaluronan: a simple polysaccharide with diverse biological functions.
Acta Biomater. 2014 Apr;10(4):1558-70. doi: 10.1016/j.actbio.2013.12.019. Epub 2013 Dec 18.
9
Embedded multicellular spheroids as a biomimetic 3D cancer model for evaluating drug and drug-device combinations.
Biomaterials. 2014 Feb;35(7):2264-71. doi: 10.1016/j.biomaterials.2013.11.038. Epub 2013 Dec 19.
10
In vitro models of tumor vessels and matrix: engineering approaches to investigate transport limitations and drug delivery in cancer.
Adv Drug Deliv Rev. 2014 Apr;69-70:205-216. doi: 10.1016/j.addr.2013.11.011. Epub 2013 Dec 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验