Winkler Christiane, Krumsiek Jan, Buettner Florian, Angermüller Christof, Giannopoulou Eleni Z, Theis Fabian J, Ziegler Anette-Gabriele, Bonifacio Ezio
Institute of Diabetes Research, Helmholtz Zentrum München, and Forschergruppe Diabetes, Klinikum rechts der Isar, Technische Universität München, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany.
Diabetologia. 2014 Dec;57(12):2521-9. doi: 10.1007/s00125-014-3362-1. Epub 2014 Sep 4.
AIMS/HYPOTHESIS: More than 40 regions of the human genome confer susceptibility for type 1 diabetes and could be used to establish population screening strategies. The aim of our study was to identify weighted sets of SNP combinations for type 1 diabetes prediction.
We applied multivariable logistic regression and Bayesian feature selection to the Type 1 Diabetes Genetics Consortium (T1DGC) dataset with genotyping of HLA plus 40 SNPs within other type 1 diabetes-associated gene regions in 4,574 cases and 1,207 controls. We tested the weighted models in an independent validation set (765 cases, 423 controls), and assessed their performance in 1,772 prospectively followed children.
The inclusion of 40 non-HLA gene SNPs significantly improved the prediction of type 1 diabetes over that provided by HLA alone (p = 3.1 × 10(-25)), with a receiver operating characteristic AUC of 0.87 in the T1DGC set, and 0.84 in the validation set. Feature selection identified HLA plus nine SNPs from the PTPN22, INS, IL2RA, ERBB3, ORMDL3, BACH2, IL27, GLIS3 and RNLS genes that could achieve similar prediction accuracy as the total SNP set. Application of this ten SNP model to prospectively followed children was able to improve risk stratification over that achieved by HLA genotype alone.
We provided a weighted risk model with selected SNPs that could be considered for recruitment of infants into studies of early type 1 diabetes natural history or appropriately safe prevention.
目的/假设:人类基因组中有40多个区域赋予1型糖尿病易感性,可用于建立人群筛查策略。我们研究的目的是确定用于预测1型糖尿病的单核苷酸多态性(SNP)组合加权集。
我们将多变量逻辑回归和贝叶斯特征选择应用于1型糖尿病遗传联盟(T1DGC)数据集,该数据集对4574例病例和1207例对照进行了HLA基因分型以及其他1型糖尿病相关基因区域内的40个SNP基因分型。我们在一个独立的验证集(765例病例,423例对照)中测试了加权模型,并在1772名前瞻性随访儿童中评估了它们的性能。
与仅使用HLA相比,纳入40个非HLA基因SNP显著改善了1型糖尿病的预测(p = 3.1×10⁻²⁵),在T1DGC集中受试者工作特征曲线下面积(AUC)为0.87,在验证集中为0.84。特征选择确定了来自蛋白酪氨酸磷酸酶非受体型22(PTPN22)、胰岛素(INS)、白细胞介素2受体α链(IL2RA)、表皮生长因子受体3(ERBB3)、含ORD跨膜蛋白3(ORMDL3)、BACH2转录因子(BACH2)、白细胞介素27(IL27)、葡萄糖诱导基因3(GLIS3)和核糖核酸酶样蛋白(RNLS)基因的HLA加9个SNP,它们可实现与整个SNP集相似的预测准确性。将这个十个SNP模型应用于前瞻性随访儿童能够比仅通过HLA基因型实现的风险分层有所改善。
我们提供了一个带有选定SNP的加权风险模型,可考虑将其用于招募婴儿进入1型糖尿病早期自然史研究或适当安全的预防研究。