Suppr超能文献

计算机辅助检测系统对放射科医生在数字化乳腺摄影中准确性的影响。

Impact of computer-aided detection systems on radiologist accuracy with digital mammography.

作者信息

Cole Elodia B, Zhang Zheng, Marques Helga S, Edward Hendrick R, Yaffe Martin J, Pisano Etta D

机构信息

1 Department of Radiology and Radiological Science, Medical University of South Carolina, 96 Jonathan Lucas St, Ste 210, MSC 323, Charleston, SC 29425.

出版信息

AJR Am J Roentgenol. 2014 Oct;203(4):909-16. doi: 10.2214/AJR.12.10187.

Abstract

OBJECTIVE

The purpose of this study was to assess the impact of computer-aided detection (CAD) systems on the performance of radiologists with digital mammograms acquired during the Digital Mammographic Imaging Screening Trial (DMIST).

MATERIALS AND METHODS

Only those DMIST cases with proven cancer status by biopsy or 1-year follow-up that had available digital images were included in this multireader, multicase ROC study. Two commercially available CAD systems for digital mammography were used: iCAD SecondLook, version 1.4; and R2 ImageChecker Cenova, version 1.0. Fourteen radiologists interpreted, without and with CAD, a set of 300 cases (150 cancer, 150 benign or normal) on the iCAD SecondLook system, and 15 radiologists interpreted a different set of 300 cases (150 cancer, 150 benign or normal) on the R2 ImageChecker Cenova system.

RESULTS

The average AUC was 0.71 (95% CI, 0.66-0.76) without and 0.72 (95% CI, 0.67-0.77) with the iCAD system (p = 0.07). Similarly, the average AUC was 0.71 (95% CI, 0.66-0.76) without and 0.72 (95% CI 0.67-0.77) with the R2 system (p = 0.08). Sensitivity and specificity differences without and with CAD for both systems also were not significant.

CONCLUSION

Radiologists in our studies rarely changed their diagnostic decisions after the addition of CAD. The application of CAD had no statistically significant effect on radiologist AUC, sensitivity, or specificity performance with digital mammograms from DMIST.

摘要

目的

本研究旨在评估计算机辅助检测(CAD)系统对在数字化乳腺X线摄影筛查试验(DMIST)期间获取的数字化乳腺X线片上放射科医生表现的影响。

材料与方法

本多读者、多病例ROC研究仅纳入了那些经活检或1年随访证实癌症状态且有可用数字化图像的DMIST病例。使用了两种市售的数字化乳腺X线摄影CAD系统:iCAD SecondLook,版本1.4;以及R2 ImageChecker Cenova,版本1.0。14名放射科医生在iCAD SecondLook系统上对一组300例病例(150例癌症、150例良性或正常)进行了无CAD和有CAD情况下的解读,15名放射科医生在R2 ImageChecker Cenova系统上对另一组300例病例(150例癌症、150例良性或正常)进行了解读。

结果

使用iCAD系统时,无CAD情况下的平均曲线下面积(AUC)为0.71(95%可信区间,0.66 - 0.76),有CAD情况下为0.72(95%可信区间,0.67 - 0.77)(p = 0.07)。同样,使用R2系统时,无CAD情况下的平均AUC为0.71(95%可信区间,0.66 - 0.76),有CAD情况下为0.72(95%可信区间0.67 - 0.77)(p = 0.08)。两种系统在无CAD和有CAD情况下的敏感性和特异性差异也均无统计学意义。

结论

在我们的研究中,放射科医生在添加CAD后很少改变他们的诊断决策。CAD的应用对放射科医生使用DMIST的数字化乳腺X线片时的AUC、敏感性或特异性表现没有统计学上的显著影响。

相似文献

1
Impact of computer-aided detection systems on radiologist accuracy with digital mammography.
AJR Am J Roentgenol. 2014 Oct;203(4):909-16. doi: 10.2214/AJR.12.10187.
3
Diagnostic Accuracy of Digital Screening Mammography With and Without Computer-Aided Detection.
JAMA Intern Med. 2015 Nov;175(11):1828-37. doi: 10.1001/jamainternmed.2015.5231.
9
Mammographic density and cancer detection: does digital imaging challenge our current understanding?
Acad Radiol. 2014 Nov;21(11):1377-85. doi: 10.1016/j.acra.2014.06.004. Epub 2014 Aug 2.

引用本文的文献

2
Controversies in the Application of AI in Radiology-Is There Medico-Legal Support? Aspects from Romanian Practice.
Diagnostics (Basel). 2025 Jan 20;15(2):230. doi: 10.3390/diagnostics15020230.
3
Machine learning and new insights for breast cancer diagnosis.
J Int Med Res. 2024 Apr;52(4):3000605241237867. doi: 10.1177/03000605241237867.
7
Patient Graph Deep Learning to Predict Breast Cancer Molecular Subtype.
IEEE/ACM Trans Comput Biol Bioinform. 2023 Sep-Oct;20(5):3117-3127. doi: 10.1109/TCBB.2023.3290394. Epub 2023 Oct 10.
9
Multi- class classification of breast cancer abnormalities using Deep Convolutional Neural Network (CNN).
PLoS One. 2021 Aug 26;16(8):e0256500. doi: 10.1371/journal.pone.0256500. eCollection 2021.
10
Deep Learning-Based Artificial Intelligence for Mammography.
Korean J Radiol. 2021 Aug;22(8):1225-1239. doi: 10.3348/kjr.2020.1210. Epub 2021 May 4.

本文引用的文献

2
Clinically missed cancer: how effectively can radiologists use computer-aided detection?
AJR Am J Roentgenol. 2012 Mar;198(3):708-16. doi: 10.2214/AJR.11.6423.
3
Effectiveness of computer-aided detection in community mammography practice.
J Natl Cancer Inst. 2011 Aug 3;103(15):1152-61. doi: 10.1093/jnci/djr206. Epub 2011 Jul 27.
4
False positive marks on unsuspicious screening mammography with computer-aided detection.
J Digit Imaging. 2011 Oct;24(5):772-7. doi: 10.1007/s10278-011-9389-7.
5
How widely is computer-aided detection used in screening and diagnostic mammography?
J Am Coll Radiol. 2010 Oct;7(10):802-5. doi: 10.1016/j.jacr.2010.05.019.
6
Computer-aided detection system applied to full-field digital mammograms.
Acta Radiol. 2010 Dec;51(10):1086-92. doi: 10.3109/02841851.2010.520024. Epub 2010 Oct 1.
10
Performance of computer-aided detection applied to full-field digital mammography in detection of breast cancers.
Eur J Radiol. 2011 Mar;77(3):457-61. doi: 10.1016/j.ejrad.2009.08.024. Epub 2009 Oct 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验