Suppr超能文献

含硒和碲的荧光分子探针用于检测生物重要分析物。

Selenium- and tellurium-containing fluorescent molecular probes for the detection of biologically important analytes.

机构信息

Center for Catalytic Hydrocarbon Functionalization, Institute for Basic Science (IBS) , 373-1 Guseong-dong, Yuseong-gu, Daejeon, 305-701, Republic of Korea.

出版信息

Acc Chem Res. 2014 Oct 21;47(10):2985-98. doi: 10.1021/ar500187v. Epub 2014 Sep 23.

Abstract

As scientists in recent decades have discovered, selenium is an important trace element in life. The element is now known to play an important role in biology as an enzymatic antioxidant. In this case, it sits at the active site and converts biological hydrogen peroxides to water. Mimicking this reaction, chemists have synthesized several organoselenium compounds that undergo redox transformations. As such, these types of compounds are important in the future of both medicinal and materials chemistry. One main challenge for organochalcogen chemists has been to synthesize molecular probes that are soluble in water where a selenium or tellurium center can best modify electronics of the molecule based on a chemical oxidation or reduction event. In this Account, we discuss chemists' recent efforts to create chalcogen-based chemosensors through synthetic means and current photophysical understanding. Our work has focused on small chromophoric or fluorophoric molecules, in which we incorporate discrete organochalcogen atoms (e.g., R-Se-R, R-Te-R) in predesigned sites. These synthetic molecules, involving rational synthetic pathways, allow us to chemoselectively oxidize compounds and to study the level of analyte selectivity by way of their optical responses. All the reports we discussed here deal with well-defined and small synthetic molecular systems. With a large number of reports published over the last few years, many have notably originated from the laboratory of K. Han (P. R. China). This growing body of research has given chemists new ideas for the previously untenable reversible reactive oxygen species detection. While reversibility of the probe is technically important from the stand-point of the chalcogen center, facile regenerability of the probe using a secondary analyte to recover the initial probe is a very promising avenue. This is because (bio)chalcogen chemistry is extremely rich and bioinspired and continues to yield important developments across many scientific fields. Organochalcogen (R-E-R) chemistry in such chemical recognition and supramolecular pursuits is a fundamental tool to allow chemists to explore stable organic-based probe modalities of interest to develop better spectroscopic tools for (neuro)biological applications. Chalcogen donor sites also provide sites where metals can coordinate, and facile oxidation may extend to the sulfone analogues (R-EO2-R) or beyond. Consequently, chemists can then make use of reliable reversible chemical probing platforms based on the chemical redox properties valence state switching principally from 2 to 4 (and back to 2) of selenium and tellurium atoms. The main organic molecular skeletons have involved chemical frames including boron-dipyrromethene (BODIPY) systems, extended cyanine groups, naphthalimide, rhodamine, and fluorescein cores, and isoselenazolone, pyrene, coumarin, benzoselenadiazole, and selenoguanine systems. Our group has tested many such molecular probe systems in cellular milieu and under a series of conditions and competitive environments. We have found that the most important analytes have been reactive oxygen species (ROS) such as superoxide and hypochlorite. Reactive nitrogen species (RNS) such as peroxynitrite are also potential targets. In addition, we have also considered Fenton chemistry systems. Our research and that of others shows that the action of ROS is often reversible with H2S or biothiols such as glutathione (GSH). We have also found that a second class of analytes are the thiols (RSH), in particular, biothiols. Here, the target group might involve an R-Se-Se-R group. The study of analytes also extends to metal ions, for example, Hg(2+), and anions such as fluoride (F(-)), and we have developed NIR-based systems as well. These work through various photomechanisms, including photoinduced electron transfer (PET), twisted internal charge transfer (TICT), and internal charge transfer (ICT). The growing understanding of this class of probe suggests that there is much room for creative thinking regarding modular designs or unexpected organic chemical synthesis designs, interplay between analytes, new analyte selectivity, biological targeting, and chemical switching, which can also serve to further the neurological probing and molecular logic gating frontiers.

摘要

作为近几十年来的科学家们所发现的,硒是生命中一种重要的微量元素。现在已知,这种元素在生物学中作为一种酶抗氧化剂起着重要作用。在这种情况下,它位于活性部位,并将生物过氧化氢转化为水。化学家们模仿这种反应,合成了几种有机硒化合物,这些化合物经历了氧化还原转化。因此,这些类型的化合物在医学和材料化学的未来都非常重要。有机硫化学家面临的主要挑战之一是合成水溶性的分子探针,在这种情况下,硒或碲中心可以根据化学氧化或还原事件最好地修饰分子的电子。在这个账户中,我们讨论了化学家们最近通过合成手段创造基于硫属元素的化学传感器的努力,以及当前的光物理理解。我们的工作集中在小的发色团或荧光团分子上,其中我们在预定的位置中引入离散的有机硫属原子(例如,R-Se-R,R-Te-R)。这些合成分子,涉及合理的合成途径,使我们能够选择性地氧化化合物,并通过光学响应来研究分析物选择性的水平。我们讨论的所有报告都涉及到定义明确和小的合成分子系统。在过去的几年中,发表了大量的报告,其中许多都源于韩(中国)的实验室。这一不断增长的研究为以前不可行的活性氧物种检测提供了新的思路。虽然探针的可逆性从硫属中心的角度来看在技术上很重要,但使用二次分析物来恢复初始探针的探针的易再生性是一个非常有前途的途径。这是因为(生物)硫属化学非常丰富,具有生物启发作用,并继续在许多科学领域产生重要的发展。在这种化学识别和超分子追求中,有机硫属(R-E-R)化学是一种基本工具,使化学家能够探索稳定的有机基探针模式,以开发更好的用于(神经)生物学应用的光谱工具。硫属供体部位还提供了金属可以配位的部位,并且容易氧化可能扩展到砜类似物(R-EO2-R)或更远。因此,化学家可以利用基于化学氧化还原性质价态转换的可靠可逆化学探测平台,主要从 2 到 4(并返回 2)的硒和碲原子。主要的有机分子骨架包括硼二吡咯甲川(BODIPY)系统、扩展的氰基、萘二酰亚胺、罗丹明和荧光素核心以及异硒唑酮、芘、香豆素、苯并硒二唑和硒鸟嘌呤系统。我们的小组已经在细胞环境和一系列条件和竞争环境下测试了许多这样的分子探针系统。我们发现,最重要的分析物是活性氧(ROS),如超氧自由基和次氯酸盐。活性氮(RNS),如过氧亚硝酸盐也是潜在的目标。此外,我们还考虑了 Fenton 化学系统。我们的研究和其他人的研究表明,ROS 的作用通常是可逆的,与 H2S 或谷胱甘肽(GSH)等生物硫醇。我们还发现,第二类分析物是硫醇(RSH),特别是生物硫醇。在这里,目标基团可能涉及 R-Se-Se-R 基团。分析物的研究还扩展到金属离子,例如汞(2+)和阴离子,如氟化物(F(-)),我们也开发了基于近红外的系统。这些通过各种光机制工作,包括光诱导电子转移(PET)、扭曲内部电荷转移(TICT)和内部电荷转移(ICT)。对这类探针的认识的不断提高表明,在模块化设计或意想不到的有机化学合成设计、分析物之间的相互作用、新的分析物选择性、生物靶向和化学转换方面,还有很大的创造性思维空间,这也可以进一步推动神经探测和分子逻辑门前沿的发展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验