Suppr超能文献

甲型禽流感(H7N9)病毒的大流行潜力。

Pandemic potential of avian influenza A (H7N9) viruses.

作者信息

Watanabe Tokiko, Watanabe Shinji, Maher Eileen A, Neumann Gabriele, Kawaoka Yoshihiro

机构信息

Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 575 Science Drive, Madison, WI 53711, USA; ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama 332-0012, Japan; Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.

ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama 332-0012, Japan; Laboratory of Veterinary Microbiology, Department of Veterinary Sciences, University of Miyazaki, Miyazaki, 889-2192, Japan.

出版信息

Trends Microbiol. 2014 Nov;22(11):623-31. doi: 10.1016/j.tim.2014.08.008. Epub 2014 Sep 25.

Abstract

Avian influenza viruses rarely infect humans, but the recently emerged avian H7N9 influenza viruses have caused sporadic infections in humans in China, resulting in 440 confirmed cases with 122 fatalities as of 16 May 2014. In addition, epidemiologic surveys suggest that there have been asymptomatic or mild human infections with H7N9 viruses. These viruses replicate efficiently in mammals, show limited transmissibility in ferrets and guinea pigs, and possess mammalian-adapting amino acid changes that likely contribute to their ability to infect mammals. In this review, we summarize the characteristic features of the novel H7N9 viruses and assess their pandemic potential.

摘要

禽流感病毒很少感染人类,但最近出现的禽H7N9流感病毒已在中国导致人类散发病例,截至2014年5月16日,确诊病例达440例,其中122人死亡。此外,流行病学调查表明,存在H7N9病毒的无症状或轻症人类感染情况。这些病毒在哺乳动物中能高效复制,在雪貂和豚鼠中显示出有限的传播能力,并且具有可能有助于其感染哺乳动物能力的适应哺乳动物的氨基酸变化。在本综述中,我们总结了新型H7N9病毒的特征并评估了它们的大流行潜力。

相似文献

1
Pandemic potential of avian influenza A (H7N9) viruses.
Trends Microbiol. 2014 Nov;22(11):623-31. doi: 10.1016/j.tim.2014.08.008. Epub 2014 Sep 25.
2
Transmission of H7N9 Influenza Viruses with a Polymorphism at PB2 Residue 627 in Chickens and Ferrets.
J Virol. 2015 Oct;89(19):9939-51. doi: 10.1128/JVI.01444-15. Epub 2015 Jul 22.
3
Birds of ill omen--is H7N9 the harbinger of the next pandemic?
Microbes Infect. 2013 Jun;15(6-7):429-31. doi: 10.1016/j.micinf.2013.04.011. Epub 2013 May 18.
4
The Pandemic Threat of Emerging H5 and H7 Avian Influenza Viruses.
Viruses. 2018 Aug 28;10(9):461. doi: 10.3390/v10090461.
5
Transmissibility of novel H7N9 and H9N2 avian influenza viruses between chickens and ferrets.
Virology. 2014 Feb;450-451:316-23. doi: 10.1016/j.virol.2013.12.022. Epub 2014 Jan 14.
6
The novel H7N9 influenza A virus: its present impact and indeterminate future.
Vector Borne Zoonotic Dis. 2013 Jun;13(6):347-8. doi: 10.1089/vbz.2013.999.ceezad. Epub 2013 Apr 30.
7
Risk Assessment of Fifth-Wave H7N9 Influenza A Viruses in Mammalian Models.
J Virol. 2018 Dec 10;93(1). doi: 10.1128/JVI.01740-18. Print 2019 Jan 1.
8
H7N9 avian influenza A virus and the perpetual challenge of potential human pandemicity.
mBio. 2013 Jul 9;4(4):e00445-13. doi: 10.1128/mBio.00445-13.
10
Avian influenza H7N9/13 and H7N7/13: a comparative virulence study in chickens, pigeons, and ferrets.
J Virol. 2014 Aug;88(16):9153-65. doi: 10.1128/JVI.01241-14. Epub 2014 Jun 4.

引用本文的文献

1
A branched peptide targets virus and host to block influenza virus and rhinovirus entry.
Antimicrob Agents Chemother. 2025 Aug 6;69(8):e0002425. doi: 10.1128/aac.00024-25. Epub 2025 Jun 25.
3
Fluorescence-barcoded cell lines stably expressing membrane-anchored influenza neuraminidases.
Vaccine. 2025 May 22;56:127157. doi: 10.1016/j.vaccine.2025.127157. Epub 2025 Apr 21.
5
Fluorescence-barcoded cell lines stably expressing membrane-anchored influenza neuraminidases.
bioRxiv. 2025 Jan 2:2025.01.01.631020. doi: 10.1101/2025.01.01.631020.
6
Virus versus host: influenza A virus circumvents the immune responses.
Front Microbiol. 2024 May 16;15:1394510. doi: 10.3389/fmicb.2024.1394510. eCollection 2024.
7
Targeted genomic sequencing of avian influenza viruses in wetland sediment from wild bird habitats.
Appl Environ Microbiol. 2024 Feb 21;90(2):e0084223. doi: 10.1128/aem.00842-23. Epub 2024 Jan 23.
9
Adaptation of the H7N2 Feline Influenza Virus to Human Respiratory Cell Culture.
Viruses. 2022 May 19;14(5):1091. doi: 10.3390/v14051091.
10
Fusion-inhibition peptide broadly inhibits influenza virus and SARS-CoV-2, including Delta and Omicron variants.
Emerg Microbes Infect. 2022 Dec;11(1):926-937. doi: 10.1080/22221751.2022.2051753.

本文引用的文献

1
Circulating avian influenza viruses closely related to the 1918 virus have pandemic potential.
Cell Host Microbe. 2014 Jun 11;15(6):692-705. doi: 10.1016/j.chom.2014.05.006.
4
Prognosis of 18 H7N9 avian influenza patients in Shanghai.
PLoS One. 2014 Apr 2;9(4):e88728. doi: 10.1371/journal.pone.0088728. eCollection 2014.
6
Role of receptor binding specificity in influenza A virus transmission and pathogenesis.
EMBO J. 2014 Apr 16;33(8):823-41. doi: 10.1002/embj.201387442. Epub 2014 Mar 25.
7
Complex reassortment of polymerase genes in Asian influenza A virus H7 and H9 subtypes.
Infect Genet Evol. 2014 Apr;23:203-8. doi: 10.1016/j.meegid.2014.02.016. Epub 2014 Mar 12.
10
Unique reassortant of influenza A(H7N9) virus associated with severe disease emerging in Hong Kong.
J Infect. 2014 Jul;69(1):60-8. doi: 10.1016/j.jinf.2014.02.012. Epub 2014 Feb 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验