Suppr超能文献

向衰竭心脏提供的膳食脂肪决定了用于核受体激活和储存甘油三酯氧化的动态脂质信号传导。

Dietary fat supply to failing hearts determines dynamic lipid signaling for nuclear receptor activation and oxidation of stored triglyceride.

作者信息

Lahey Ryan, Wang Xuerong, Carley Andrew N, Lewandowski E Douglas

机构信息

From the Center for Cardiovascular Research, University of Illinois at Chicago College of Medicine, Chicago, IL.

出版信息

Circulation. 2014 Nov 11;130(20):1790-9. doi: 10.1161/CIRCULATIONAHA.114.011687. Epub 2014 Sep 29.

Abstract

BACKGROUND

Intramyocardial triglyceride (TG) turnover is reduced in pressure-overloaded, failing hearts, limiting the availability of this rich source of long-chain fatty acids for mitochondrial β-oxidation and nuclear receptor activation. This study explored 2 major dietary fats, palmitate and oleate, in supporting endogenous TG dynamics and peroxisome proliferator-activated receptor-α activation in sham-operated (SHAM) and hypertrophied (transverse aortic constriction [TAC]) rat hearts.

METHODS AND RESULTS

Isolated SHAM and TAC hearts were provided media containing carbohydrate with either (13)C-palmitate or (13)C-oleate for dynamic (13)C nuclear magnetic resonance spectroscopy and end point liquid chromatography/mass spectrometry of TG dynamics. With palmitate, TAC hearts contained 48% less TG versus SHAM (P=0.0003), whereas oleate maintained elevated TG in TAC, similar to SHAM. TG turnover in TAC was greatly reduced with palmitate (TAC, 46.7±12.2 nmol/g dry weight per min; SHAM, 84.3±4.9; P=0.0212), as was β-oxidation of TG. Oleate elevated TG turnover in both TAC (140.4±11.2) and SHAM (143.9±15.6), restoring TG oxidation in TAC. Peroxisome proliferator-activated receptor-α target gene transcripts were reduced by 70% in TAC with palmitate, whereas oleate induced normal transcript levels. Additionally, mRNA levels for peroxisome proliferator-activated receptor-γ-coactivator-1α and peroxisome proliferator-activated receptor-γ-coactivator-1β in TAC hearts were maintained by oleate. With these metabolic effects, oleate also supported a 25% improvement in contractility over palmitate with TAC (P=0.0202).

CONCLUSIONS

The findings link reduced intracellular lipid storage dynamics to impaired peroxisome proliferator-activated receptor-α signaling and contractility in diseased hearts, consistent with a rate-dependent lipolytic activation of peroxisome proliferator-activated receptor-α. In decompensated hearts, oleate may serve as a beneficial energy substrate versus palmitate by upregulating TG dynamics and nuclear receptor signaling.

摘要

背景

在压力超负荷的衰竭心脏中,心肌内甘油三酯(TG)周转减少,限制了这种丰富的长链脂肪酸来源用于线粒体β氧化和核受体激活。本研究探讨了两种主要膳食脂肪,棕榈酸酯和油酸酯,在支持假手术(SHAM)和肥大(横向主动脉缩窄 [TAC])大鼠心脏内源性TG动态变化和过氧化物酶体增殖物激活受体-α激活方面的作用。

方法与结果

为分离的SHAM和TAC心脏提供含有碳水化合物以及(13)C-棕榈酸酯或(13)C-油酸酯的培养基,用于动态(13)C核磁共振波谱分析以及TG动态变化的终点液相色谱/质谱分析。对于棕榈酸酯,TAC心脏中的TG含量比SHAM心脏低48%(P = 0.0003),而油酸酯使TAC心脏中的TG维持在升高水平,与SHAM心脏相似。使用棕榈酸酯时,TAC心脏中的TG周转大幅降低(TAC,46.7±12.2 nmol/g干重每分钟;SHAM,84.3±4.9;P = 0.0212),TG的β氧化也降低。油酸酯使TAC(140.4±11.2)和SHAM(143.9±15.6)心脏中的TG周转均升高,恢复了TAC心脏中的TG氧化。在TAC心脏中,使用棕榈酸酯时过氧化物酶体增殖物激活受体-α靶基因转录本减少70%,而油酸酯诱导正常转录水平。此外,油酸酯维持了TAC心脏中过氧化物酶体增殖物激活受体-γ-辅激活因子-1α和过氧化物酶体增殖物激活受体-γ-辅激活因子-1β的mRNA水平。有了这些代谢效应,与棕榈酸酯相比,油酸酯还使TAC心脏的收缩力提高了25%(P = 0.0202)。

结论

这些发现将细胞内脂质储存动态变化的减少与患病心脏中过氧化物酶体增殖物激活受体-α信号传导受损及收缩力受损联系起来,这与过氧化物酶体增殖物激活受体-α的速率依赖性脂解激活一致。在失代偿心脏中,与棕榈酸酯相比,油酸酯可能通过上调TG动态变化和核受体信号传导而作为有益的能量底物。

相似文献

1
Dietary fat supply to failing hearts determines dynamic lipid signaling for nuclear receptor activation and oxidation of stored triglyceride.
Circulation. 2014 Nov 11;130(20):1790-9. doi: 10.1161/CIRCULATIONAHA.114.011687. Epub 2014 Sep 29.
2
Preservation of Acyl Coenzyme A Attenuates Pathological and Metabolic Cardiac Remodeling Through Selective Lipid Trafficking.
Circulation. 2019 Jun 11;139(24):2765-2777. doi: 10.1161/CIRCULATIONAHA.119.039610. Epub 2019 Mar 26.
3
Western diet impairs metabolic remodelling and contractile efficiency in cardiac hypertrophy.
Cardiovasc Res. 2009 Feb 15;81(3):610-7. doi: 10.1093/cvr/cvn316. Epub 2008 Nov 21.
6
PGC-1β deficiency accelerates the transition to heart failure in pressure overload hypertrophy.
Circ Res. 2011 Sep 16;109(7):783-93. doi: 10.1161/CIRCRESAHA.111.243964. Epub 2011 Jul 28.
7
Differential effects of high-fat diet on myocardial lipid metabolism in failing and nonfailing hearts with angiotensin II-mediated cardiac remodeling in mice.
Am J Physiol Heart Circ Physiol. 2012 May 1;302(9):H1795-805. doi: 10.1152/ajpheart.01023.2011. Epub 2012 Mar 9.
9
Short-Chain Fatty Acids Outpace Ketone Oxidation in the Failing Heart.
Circulation. 2021 May 4;143(18):1797-1808. doi: 10.1161/CIRCULATIONAHA.120.052671. Epub 2021 Feb 19.
10
Activation of PPAR-α in the early stage of heart failure maintained myocardial function and energetics in pressure-overload heart failure.
Am J Physiol Heart Circ Physiol. 2017 Feb 1;312(2):H305-H313. doi: 10.1152/ajpheart.00553.2016. Epub 2016 Dec 23.

引用本文的文献

1
The role of Perilipin 5 in pathological myocardial remodeling.
Front Pharmacol. 2025 Mar 17;16:1526494. doi: 10.3389/fphar.2025.1526494. eCollection 2025.
2
The Role of Olive Oil in Cardiometabolic Risk.
Metabolites. 2025 Mar 11;15(3):190. doi: 10.3390/metabo15030190.
3
Metabolic flexibility and reverse remodelling of the failing human heart.
Eur Heart J. 2025 Jul 1;46(25):2422-2433. doi: 10.1093/eurheartj/ehaf033.
4
Mechano-energetic uncoupling in hypertrophic cardiomyopathy: Pathophysiological mechanisms and therapeutic opportunities.
J Mol Cell Cardiol Plus. 2023 May 6;4:100036. doi: 10.1016/j.jmccpl.2023.100036. eCollection 2023 Jun.
6
The changes of cardiac energy metabolism with sodium-glucose transporter 2 inhibitor therapy.
Front Cardiovasc Med. 2023 Dec 6;10:1291450. doi: 10.3389/fcvm.2023.1291450. eCollection 2023.
7
Advances in Metabolic Remodeling and Intervention Strategies in Heart Failure.
J Cardiovasc Transl Res. 2024 Feb;17(1):36-55. doi: 10.1007/s12265-023-10443-0. Epub 2023 Oct 16.
9
Metabolic flux in the driver's seat during cardiac health and disease.
J Mol Cell Cardiol. 2023 Sep;182:15-24. doi: 10.1016/j.yjmcc.2023.07.004. Epub 2023 Jul 13.
10
Metabolic mechanisms in physiological and pathological cardiac hypertrophy: new paradigms and challenges.
Nat Rev Cardiol. 2023 Dec;20(12):812-829. doi: 10.1038/s41569-023-00887-x. Epub 2023 May 26.

本文引用的文献

1
Retraction and Republication: Primary Prevention of Cardiovascular Disease with a Mediterranean Diet. N Engl J Med 2013;368:1279-90.
N Engl J Med. 2018 Jun 21;378(25):2441-2442. doi: 10.1056/NEJMc1806491. Epub 2018 Jun 13.
2
Cardiomyocyte-specific perilipin 5 overexpression leads to myocardial steatosis and modest cardiac dysfunction.
J Lipid Res. 2013 Apr;54(4):953-65. doi: 10.1194/jlr.M032466. Epub 2013 Jan 23.
3
Multiphasic triacylglycerol dynamics in the intact heart during acute in vivo overexpression of CD36.
J Lipid Res. 2013 Jan;54(1):97-106. doi: 10.1194/jlr.M029991. Epub 2012 Oct 25.
5
Acute liver carnitine palmitoyltransferase I overexpression recapitulates reduced palmitate oxidation of cardiac hypertrophy.
Circ Res. 2013 Jan 4;112(1):57-65. doi: 10.1161/CIRCRESAHA.112.274456. Epub 2012 Sep 14.
6
Control of mitochondrial metabolism and systemic energy homeostasis by microRNAs 378 and 378*.
Proc Natl Acad Sci U S A. 2012 Sep 18;109(38):15330-5. doi: 10.1073/pnas.1207605109. Epub 2012 Sep 4.
7
Lipid metabolism and toxicity in the heart.
Cell Metab. 2012 Jun 6;15(6):805-12. doi: 10.1016/j.cmet.2012.04.006.
9
C16 ceramide is crucial for triacylglycerol-induced apoptosis in macrophages.
Cell Death Dis. 2012 Mar 15;3(3):e280. doi: 10.1038/cddis.2012.17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验