Suppr超能文献

碳纳米管在人体呼吸道中的清除——一种理论方法。

Clearance of carbon nanotubes in the human respiratory tract-a theoretical approach.

机构信息

Brunnleitenweg 41, A-5061 Elsbethen, Salzburg, Austria.

出版信息

Ann Transl Med. 2014 May;2(5):46. doi: 10.3978/j.issn.2305-5839.2014.04.12.

Abstract

INTRODUCTION

Theoretical knowledge of carbon nanotube clearance in the human respiratory tract represents an essential contribution to the risk assessment of artificial airborne nanomaterials. Thus, single phases of nanotube clearance were simulated with the help of a theoretical model.

METHODS

In this study, clearance of single-walled carbon nanotubes (SWCNT) and multi-walled carbon nanotubes (MWCNT) was simulated by using a validated mathematical approach that includes all clearance mechanisms known hitherto. Fast mucociliary clearance is approximated by a steady-state steady-flow mucus model, whereas slow clearance mechanisms are modeled by definition of related clearance half-times.

RESULTS

Clearance may be subdivided into three phases, including fast bronchial clearance (mucociliary escalator), slow bronchial clearance (particle uptake by airway macrophages, transcytosis), and alveolar clearance (phagocytosis by alveolar macrophages, endocytosis by alveolar epithelium). According to the clearance model used in this study, mucociliary clearance is completed within the first 24 h after exposure, whereas slow bronchial clearance is characterized by a half-time of 5 d. Alveolar clearance is marked by half-times >100 d. As a result of their different deposition patterns, SWCNT and MWCNT show some discrepancies with regard to their clearance insofar as long SWCNT reside significantly longer in the lungs than MWCNT. This circumstance is among other expressed by higher 24-h, 10-d, and 100-d retentions computed for SWCNT compared to MWCNT.

DISCUSSION AND CONCLUSIONS

Due to their partly high residence times in distal lung regions, carbon nanotubes may bear the potential to act as triggers of inflammatory reactions or fibrotic modifications of the lung structure. Further they may also induce malignant transformations of lung cells, resulting in the development of lung tumours.

摘要

简介

对人类呼吸道中碳纳米管清除的理论知识代表了对人工空气传播纳米材料风险评估的重要贡献。因此,借助理论模型模拟了纳米管清除的各个单一阶段。

方法

在这项研究中,使用一种经过验证的数学方法模拟了单壁碳纳米管(SWCNT)和多壁碳纳米管(MWCNT)的清除,该方法包括迄今为止已知的所有清除机制。快速黏液纤毛清除通过稳态稳定流黏液模型进行近似,而缓慢的清除机制则通过定义相关的清除半衰期来建模。

结果

清除可分为三个阶段,包括快速支气管清除(黏液纤毛扶梯)、缓慢支气管清除(气道巨噬细胞摄取颗粒、转胞吞作用)和肺泡清除(肺泡巨噬细胞吞噬、肺泡上皮细胞内吞)。根据本研究中使用的清除模型,黏液纤毛清除在暴露后的头 24 小时内完成,而缓慢的支气管清除则以半衰期为 5 天为特征。肺泡清除的半衰期大于 100 天。由于它们不同的沉积模式,SWCNT 和 MWCNT 在清除方面存在一些差异,因为长 SWCNT 在肺部中的停留时间明显长于 MWCNT。这种情况在其他方面表现为,与 MWCNT 相比,SWCNT 的 24 小时、10 天和 100 天保留率更高。

讨论与结论

由于碳纳米管在远端肺部区域的部分停留时间较长,它们可能有潜力作为引发肺部炎症反应或纤维化改变的触发因素。此外,它们还可能诱导肺细胞恶性转化,导致肺癌的发展。

相似文献

1
Clearance of carbon nanotubes in the human respiratory tract-a theoretical approach.
Ann Transl Med. 2014 May;2(5):46. doi: 10.3978/j.issn.2305-5839.2014.04.12.
2
Carbon Nanotubes in the Human Respiratory Tract-Clearance Modeling.
Ann Work Expo Health. 2017 Mar 1;61(2):226-236. doi: 10.1093/annweh/wxw014.
3
Nanotubes in the human respiratory tract - Deposition modeling.
Z Med Phys. 2015 Jun;25(2):135-45. doi: 10.1016/j.zemedi.2014.08.002. Epub 2014 Sep 22.
4
Multi-walled carbon nanotubes (Baytubes): approach for derivation of occupational exposure limit.
Regul Toxicol Pharmacol. 2010 Jun;57(1):78-89. doi: 10.1016/j.yrtph.2009.12.012. Epub 2010 Jan 13.
5
Mouse pulmonary dose- and time course-responses induced by exposure to nitrogen-doped multi-walled carbon nanotubes.
Inhal Toxicol. 2020 Jan;32(1):24-38. doi: 10.1080/08958378.2020.1723746. Epub 2020 Feb 7.
6
Distribution and persistence of pleural penetrations by multi-walled carbon nanotubes.
Part Fibre Toxicol. 2010 Oct 4;7:28. doi: 10.1186/1743-8977-7-28.
7
Promotion of lung adenocarcinoma following inhalation exposure to multi-walled carbon nanotubes.
Part Fibre Toxicol. 2014 Jan 9;11:3. doi: 10.1186/1743-8977-11-3.
8
Distribution and fibrotic response following inhalation exposure to multi-walled carbon nanotubes.
Part Fibre Toxicol. 2013 Jul 30;10:33. doi: 10.1186/1743-8977-10-33.
10

引用本文的文献

1
Pulmonary inhalation for disease treatment: Basic research and clinical translations.
Mater Today Bio. 2024 Jan 22;25:100966. doi: 10.1016/j.mtbio.2024.100966. eCollection 2024 Apr.
2
SOX2Mediates Carbon Nanotube-Induced Fibrogenesis and Fibroblast Stem Cell Acquisition.
ACS Biomater Sci Eng. 2020 Sep 14;6(9):5290-5304. doi: 10.1021/acsbiomaterials.0c00887. Epub 2020 Aug 21.
3
Single-walled carbon nanotubes repress viral-induced defense pathways through oxidative stress.
Nanotoxicology. 2019 Nov;13(9):1176-1196. doi: 10.1080/17435390.2019.1645903. Epub 2019 Sep 27.
4
Lipid-based pulmonary delivery system: a review and future considerations of formulation strategies and limitations.
Drug Deliv Transl Res. 2018 Oct;8(5):1527-1544. doi: 10.1007/s13346-018-0550-4.
6
Bioaerosols in the lungs of subjects with different ages-Part 2: clearance modeling.
Ann Transl Med. 2017 Mar;5(5):95. doi: 10.21037/atm.2017.03.05.
7
Bioaerosols in the lungs of subjects with different ages-part 1: deposition modeling.
Ann Transl Med. 2016 Jun;4(11):211. doi: 10.21037/atm.2016.05.62.

本文引用的文献

2
A computer model for the simulation of fiber-cell interaction in the alveolar region of the respiratory tract.
Comput Biol Med. 2011 Jul;41(7):565-73. doi: 10.1016/j.compbiomed.2011.05.009. Epub 2011 May 31.
3
Translocation of intratracheally instilled multiwall carbon nanotubes to lung-associated lymph nodes in rats.
Ind Health. 2011;49(2):215-20. doi: 10.2486/indhealth.ms1213. Epub 2010 Dec 16.
4
A theoretical approach to the deposition and clearance of fibers with variable size in the human respiratory tract.
J Hazard Mater. 2009 Oct 15;170(1):210-8. doi: 10.1016/j.jhazmat.2009.04.107. Epub 2009 May 4.
5
Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study.
Nat Nanotechnol. 2008 Jul;3(7):423-8. doi: 10.1038/nnano.2008.111. Epub 2008 May 20.
6
Stochastic modeling predictions for the clearance of insoluble particles from the tracheobronchial tree of the human lung.
Bull Math Biol. 2007 Jan;69(1):395-415. doi: 10.1007/s11538-006-9143-3. Epub 2006 Sep 14.
7
A computer model for the clearance of insoluble particles from the tracheobronchial tree of the human lung.
Comput Biol Med. 2007 May;37(5):680-90. doi: 10.1016/j.compbiomed.2006.06.004. Epub 2006 Aug 8.
8
Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety.
Toxicol Sci. 2006 Jul;92(1):5-22. doi: 10.1093/toxsci/kfj130. Epub 2006 Feb 16.
10
Stochastic model of particle clearance in human bronchial airways.
J Aerosol Med. 2004 Spring;17(1):73-89. doi: 10.1089/089426804322994488.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验