Singh Manu Smriti, Lamprecht Alf
Pharmaceutical Institute, University of Bonn, Laboratory of Pharmaceutical Technology and Biopharmaceutics, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany.
Pharmaceutical Institute, University of Bonn, Laboratory of Pharmaceutical Technology and Biopharmaceutics, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany; Laboratory of Pharmaceutical Engineering, University of Franche-Comté, Besançon, France.
Int J Pharm. 2015 Jan 30;478(2):745-52. doi: 10.1016/j.ijpharm.2014.11.064. Epub 2014 Nov 28.
Inhibitors against multidrug resistance (MDR) efflux transporters have failed in most clinical settings due to unfavorable pharmacokinetic interactions with co-administered anti-cancer drug and their inherent toxicities. Nanoparticles (NPs) have shown potential to overcome drug efflux by delivering and localizing therapeutic molecules within tumor mass. In this work, we investigated effect of nanocarrier surface charge and formulation parameters for a hydrophilic and lipophilic MDR inhibitor on their ability to reverse drug resistance. Active inhibition of efflux pumps was achieved by encapsulating first and third generation P-gp inhibitors- verapamil and elacridar respectively in non-ionic, anionic and cationic surfactant-based NPs. The ability of NPs to reverse P-glycoprotein (P-gp)-mediated MDR efflux was evaluated in sensitive (A2780) and resistant (A2780Adr) ovarian cancer cell lines by various in vitro accumulation and cytotoxicity assays. Uptake mechanism for NP appears to be caveolae-dependent with 20%-higher internalization in A2780Adr than A2780 cell lines which can be co-related to the biophysical membrane composition. Cationic- CTAB NPs showed highest reversal efficacy followed by PVA and SDS-NP (P+S NP) and PVA-NPs. As compared to doxorubicin treated drug resistant cells lines, blank-, verapamil- and elacridar-CTAB-NPs showed 2.6-, 20- and 193-fold lower IC50 values. This work highlights the importance of inhibitor-loaded charged particles to overcome cancer drug resistance.
由于与同时使用的抗癌药物存在不良药代动力学相互作用及其固有毒性,针对多药耐药(MDR)外排转运蛋白的抑制剂在大多数临床环境中均告失败。纳米颗粒(NPs)已显示出通过在肿瘤块内递送和定位治疗分子来克服药物外排的潜力。在这项工作中,我们研究了纳米载体表面电荷和亲水性及亲脂性MDR抑制剂的制剂参数对其逆转耐药性能力的影响。通过分别将第一代和第三代P-糖蛋白(P-gp)抑制剂维拉帕米和艾拉司群包裹在基于非离子、阴离子和阳离子表面活性剂的纳米颗粒中,实现了对外排泵的有效抑制。通过各种体外蓄积和细胞毒性试验,在敏感(A2780)和耐药(A2780Adr)卵巢癌细胞系中评估了纳米颗粒逆转P-糖蛋白(P-gp)介导的MDR外排的能力。纳米颗粒的摄取机制似乎依赖于小窝,在A2780Adr细胞系中的内化率比A2780细胞系高20%,这可能与生物物理膜组成有关。阳离子CTAB纳米颗粒显示出最高的逆转功效,其次是PVA和SDS-NP(P+S NP)以及PVA纳米颗粒。与阿霉素处理的耐药细胞系相比,空白、维拉帕米和艾拉司群CTAB纳米颗粒的IC50值分别低2.6、20和193倍。这项工作突出了负载抑制剂的带电颗粒在克服癌症耐药性方面的重要性。