Daniel Guillaume, Musso Alessandra, Tsika Elpida, Fiser Aris, Glauser Liliane, Pletnikova Olga, Schneider Bernard L, Moore Darren J
Laboratory of Molecular Neurodegenerative Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
Neurobiol Dis. 2015 Jan;73:229-43. doi: 10.1016/j.nbd.2014.10.007. Epub 2014 Oct 18.
Mutations in the ATP13A2 (PARK9) gene cause early-onset, autosomal recessive Parkinson's disease (PD) and Kufor-Rakeb syndrome. ATP13A2 mRNA is spliced into three distinct isoforms encoding a P5-type ATPase involved in regulating heavy metal transport across vesicular membranes. Here, we demonstrate that three ATP13A2 mRNA isoforms are expressed in the normal human brain and are modestly increased in the cingulate cortex of PD cases. ATP13A2 can mediate protection toward a number of stressors in mammalian cells and can protect against α-synuclein-induced toxicity in cellular and invertebrate models of PD. Using a primary cortical neuronal model combined with lentiviral-mediated gene transfer, we demonstrate that human ATP13A2 isoforms 1 and 2 display selective neuroprotective effects toward toxicity induced by manganese and hydrogen peroxide exposure through an ATPase-independent mechanism. The familial PD mutations, F182L and G504R, abolish the neuroprotective effects of ATP13A2 consistent with a loss-of-function mechanism. We further demonstrate that the AAV-mediated overexpression of human ATP13A2 is not sufficient to attenuate dopaminergic neurodegeneration, neuropathology, and striatal dopamine and motoric deficits induced by human α-synuclein expression in a rat model of PD. Intriguingly, the delivery of an ATPase-deficient form of ATP13A2 (D513N) to the substantia nigra is sufficient to induce dopaminergic neuronal degeneration and motor deficits in rats, potentially suggesting a dominant-negative mechanism of action. Collectively, our data demonstrate a distinct lack of ATP13A2-mediated protection against α-synuclein-induced neurotoxicity in the rat nigrostriatal dopaminergic pathway, and limited neuroprotective capacity overall, and raise doubts about the potential of ATP13A2 as a therapeutic target for PD.
ATP13A2(PARK9)基因的突变会导致早发性常染色体隐性帕金森病(PD)和库福-拉凯布综合征。ATP13A2信使核糖核酸(mRNA)被剪接成三种不同的异构体,编码一种参与调节重金属跨囊泡膜运输的P5型三磷酸腺苷酶(ATP酶)。在此,我们证明三种ATP13A2 mRNA异构体在正常人类大脑中表达,且在PD病例的扣带回皮质中略有增加。ATP13A2可以介导对哺乳动物细胞中多种应激源的保护作用,并能在PD的细胞和无脊椎动物模型中抵御α-突触核蛋白诱导的毒性。利用原代皮质神经元模型结合慢病毒介导的基因转移,我们证明人类ATP13A2异构体1和2通过一种不依赖ATP酶的机制,对锰和过氧化氢暴露诱导的毒性表现出选择性神经保护作用。家族性PD突变F182L和G504R消除了ATP13A2的神经保护作用,这与功能丧失机制一致。我们进一步证明,在PD大鼠模型中,腺相关病毒(AAV)介导的人类ATP13A2过表达不足以减轻人类α-突触核蛋白表达所诱导的多巴胺能神经变性、神经病理学以及纹状体多巴胺和运动功能缺陷。有趣的是,将一种ATP酶缺陷型的ATP13A2(D513N)递送至黑质足以在大鼠中诱导多巴胺能神经元变性和运动功能缺陷,这可能提示了一种显性负性作用机制。总体而言,我们的数据表明,在大鼠黑质纹状体多巴胺能通路中,明显缺乏ATP13A2介导的针对α-突触核蛋白诱导的神经毒性的保护作用,且总体神经保护能力有限,并对ATP13A2作为PD治疗靶点的潜力提出了质疑。