Suppr超能文献

一个加速癌症治疗优化的联合临床平台。

A co-clinical platform to accelerate cancer treatment optimization.

作者信息

Lunardi Andrea, Pandolfi Pier Paolo

机构信息

Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.

Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.

出版信息

Trends Mol Med. 2015 Jan;21(1):1-5. doi: 10.1016/j.molmed.2014.10.008. Epub 2014 Nov 17.

Abstract

Sophistication in DNA and RNA sequencing technology is unraveling the tremendous genetic and molecular complexity of human cancer. However, the rate at which this knowledge is being translated into patient care is too slow. To this end, we have designed and implemented a new translational platform, 'The Co-Clinical Trial Project', where data obtained in genetically engineered mouse models (GEMMs) of human cancer treated with protocols identical to those of ongoing clinical trials or with therapies already established in patients serve to rapidly: (i) stratify patients in terms of response and resistance on the basis of genetic and molecular criteria; (ii) identify mechanisms responsible for tumor resistance; and (iii) evaluate the effectiveness of drug combinations to overcome such resistance based on mechanistic understanding.

摘要

DNA和RNA测序技术的复杂性正在揭示人类癌症巨大的遗传和分子复杂性。然而,这些知识转化为患者护理的速度过于缓慢。为此,我们设计并实施了一个新的转化平台——“联合临床试验项目”,在该项目中,通过基因工程小鼠模型(GEMMs)获得的数据,这些模型采用与正在进行的临床试验相同的方案或患者已确立的疗法进行治疗,从而能够迅速:(i)根据遗传和分子标准对患者的反应和耐药性进行分层;(ii)确定肿瘤耐药的机制;(iii)基于机制理解评估药物组合克服此类耐药性的有效性。

相似文献

1
A co-clinical platform to accelerate cancer treatment optimization.
Trends Mol Med. 2015 Jan;21(1):1-5. doi: 10.1016/j.molmed.2014.10.008. Epub 2014 Nov 17.
2
Translational therapeutics in genetically engineered mouse models of cancer.
Cold Spring Harb Protoc. 2014 Feb 1;2014(2):131-43. doi: 10.1101/pdb.top069997.
4
The project data sphere initiative: accelerating cancer research by sharing data.
Oncologist. 2015 May;20(5):464-e20. doi: 10.1634/theoncologist.2014-0431. Epub 2015 Apr 15.
5
Priceless GEMMs: genetically engineered mouse models for colorectal cancer drug development.
Trends Pharmacol Sci. 2012 Aug;33(8):449-55. doi: 10.1016/j.tips.2012.05.001. Epub 2012 Jun 26.
6
Using genetically engineered mouse models to validate candidate cancer genes and test new therapeutic approaches.
Curr Opin Genet Dev. 2012 Feb;22(1):21-7. doi: 10.1016/j.gde.2012.01.004. Epub 2012 Feb 8.
7
Predictive in vivo animal models and translation to clinical trials.
Drug Discov Today. 2012 Mar;17(5-6):253-60. doi: 10.1016/j.drudis.2012.02.003.
8
Genetically engineered mouse models in oncology research and cancer medicine.
EMBO Mol Med. 2017 Feb;9(2):137-153. doi: 10.15252/emmm.201606857.
10
From mice to men: GEMMs as trial patients for new NSCLC therapies.
Semin Cell Dev Biol. 2014 Mar;27:118-27. doi: 10.1016/j.semcdb.2014.04.002. Epub 2014 Apr 6.

引用本文的文献

2
Obesity-Associated Cancers: Evidence from Studies in Mouse Models.
Cells. 2022 Apr 27;11(9):1472. doi: 10.3390/cells11091472.
4
Bioengineered 3D models of human pancreatic cancer recapitulate in vivo tumour biology.
Nat Commun. 2021 Sep 24;12(1):5623. doi: 10.1038/s41467-021-25921-9.
5
Exploring liver cancer biology through functional genetic screens.
Nat Rev Gastroenterol Hepatol. 2021 Oct;18(10):690-704. doi: 10.1038/s41575-021-00465-x. Epub 2021 Jun 23.
6
Co-Clinical Trials: An Innovative Drug Development Platform for Cholangiocarcinoma.
Pharmaceuticals (Basel). 2021 Jan 11;14(1):51. doi: 10.3390/ph14010051.
7
Patient-Derived Xenograft Models of Breast Cancer and Their Application.
Cells. 2019 Jun 20;8(6):621. doi: 10.3390/cells8060621.
9
Patient-derived xenograft mouse models: A high fidelity tool for individualized medicine.
Oncol Lett. 2019 Jan;17(1):3-10. doi: 10.3892/ol.2018.9583. Epub 2018 Oct 16.
10
The Mouse Hospital and Its Integration in Ultra-Precision Approaches to Cancer Care.
Front Oncol. 2018 Aug 28;8:340. doi: 10.3389/fonc.2018.00340. eCollection 2018.

本文引用的文献

1
CRISPR-mediated direct mutation of cancer genes in the mouse liver.
Nature. 2014 Oct 16;514(7522):380-4. doi: 10.1038/nature13589. Epub 2014 Aug 6.
2
Intratumour heterogeneity in urologic cancers: from molecular evidence to clinical implications.
Eur Urol. 2015 Apr;67(4):729-37. doi: 10.1016/j.eururo.2014.04.014. Epub 2014 May 2.
3
Next-generation sequencing in precision oncology: challenges and opportunities.
Expert Rev Mol Diagn. 2014 Jul;14(6):635-7. doi: 10.1586/14737159.2014.916213. Epub 2014 May 3.
4
5
Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing.
Nat Genet. 2014 Mar;46(3):225-233. doi: 10.1038/ng.2891. Epub 2014 Feb 2.
7
Noncoding RNA in oncogenesis: a new era of identifying key players.
Int J Mol Sci. 2013 Sep 5;14(9):18319-49. doi: 10.3390/ijms140918319.
10
Long noncoding RNAs and the genetics of cancer.
Br J Cancer. 2013 Jun 25;108(12):2419-25. doi: 10.1038/bjc.2013.233. Epub 2013 May 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验