Suppr超能文献

使用消息传递进行模块化,可扩展地检测具有统计学意义的群落和层次结构。

Scalable detection of statistically significant communities and hierarchies, using message passing for modularity.

作者信息

Zhang Pan, Moore Cristopher

机构信息

Santa Fe Institute, Santa Fe, NM 87501.

Santa Fe Institute, Santa Fe, NM 87501

出版信息

Proc Natl Acad Sci U S A. 2014 Dec 23;111(51):18144-9. doi: 10.1073/pnas.1409770111. Epub 2014 Dec 8.

Abstract

Modularity is a popular measure of community structure. However, maximizing the modularity can lead to many competing partitions, with almost the same modularity, that are poorly correlated with each other. It can also produce illusory ''communities'' in random graphs where none exist. We address this problem by using the modularity as a Hamiltonian at finite temperature and using an efficient belief propagation algorithm to obtain the consensus of many partitions with high modularity, rather than looking for a single partition that maximizes it. We show analytically and numerically that the proposed algorithm works all of the way down to the detectability transition in networks generated by the stochastic block model. It also performs well on real-world networks, revealing large communities in some networks where previous work has claimed no communities exist. Finally we show that by applying our algorithm recursively, subdividing communities until no statistically significant subcommunities can be found, we can detect hierarchical structure in real-world networks more efficiently than previous methods.

摘要

模块度是衡量社区结构的一种常用方法。然而,最大化模块度可能会导致许多相互竞争的划分,这些划分的模块度几乎相同,但彼此之间的相关性很差。它还可能在不存在“社区”的随机图中产生虚幻的“社区”。我们通过在有限温度下将模块度用作哈密顿量,并使用高效的信念传播算法来获得许多具有高模块度的划分的共识,而不是寻找使模块度最大化的单个划分,来解决这个问题。我们通过分析和数值模拟表明,所提出的算法在由随机块模型生成的网络中一直有效,直至可检测性转变。它在真实网络上也表现良好,在一些先前研究声称不存在社区的网络中揭示了大型社区。最后,我们表明通过递归应用我们的算法,细分社区直到找不到具有统计学意义的子社区,我们可以比以前的方法更有效地检测真实网络中的层次结构。

相似文献

1
Scalable detection of statistically significant communities and hierarchies, using message passing for modularity.
Proc Natl Acad Sci U S A. 2014 Dec 23;111(51):18144-9. doi: 10.1073/pnas.1409770111. Epub 2014 Dec 8.
2
Partitioning networks into communities by message passing.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Jan;83(1 Pt 2):016115. doi: 10.1103/PhysRevE.83.016115. Epub 2011 Jan 31.
3
Benchmark graphs for testing community detection algorithms.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Oct;78(4 Pt 2):046110. doi: 10.1103/PhysRevE.78.046110. Epub 2008 Oct 24.
4
Improved community detection in weighted bipartite networks.
R Soc Open Sci. 2016 Jan 20;3(1):140536. doi: 10.1098/rsos.140536. eCollection 2016 Jan.
5
Detecting communities using asymptotical surprise.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Aug;92(2):022816. doi: 10.1103/PhysRevE.92.022816. Epub 2015 Aug 24.
6
A DC programming approach for finding communities in networks.
Neural Comput. 2014 Dec;26(12):2827-54. doi: 10.1162/NECO_a_00673. Epub 2014 Sep 23.
8
Hierarchical community structure in networks.
Phys Rev E. 2023 May;107(5-1):054305. doi: 10.1103/PhysRevE.107.054305.
9
Asymptotic analysis of the stochastic block model for modular networks and its algorithmic applications.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Dec;84(6 Pt 2):066106. doi: 10.1103/PhysRevE.84.066106. Epub 2011 Dec 12.
10
Universal phase transition in community detectability under a stochastic block model.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Mar;91(3):032804. doi: 10.1103/PhysRevE.91.032804. Epub 2015 Mar 6.

引用本文的文献

1
Network community detection via neural embeddings.
Nat Commun. 2024 Nov 1;15(1):9446. doi: 10.1038/s41467-024-52355-w.
2
Is stochastic thermodynamics the key to understanding the energy costs of computation?
Proc Natl Acad Sci U S A. 2024 Nov 5;121(45):e2321112121. doi: 10.1073/pnas.2321112121. Epub 2024 Oct 29.
3
Community detection with Greedy Modularity disassembly strategy.
Sci Rep. 2024 Feb 26;14(1):4694. doi: 10.1038/s41598-024-55190-7.
4
Robust, scalable, and informative clustering for diverse biological networks.
Genome Biol. 2023 Oct 12;24(1):228. doi: 10.1186/s13059-023-03062-0.
5
Detecting rumor outbreaks in online social networks.
Soc Netw Anal Min. 2023;13(1):91. doi: 10.1007/s13278-023-01092-x. Epub 2023 Jun 1.
6
Use of a glycomics array to establish the anti-carbohydrate antibody repertoire in type 1 diabetes.
Nat Commun. 2022 Nov 1;13(1):6527. doi: 10.1038/s41467-022-34341-2.
7
Social media analysis of car parking behavior using similarity based clustering.
J Big Data. 2022;9(1):74. doi: 10.1186/s40537-022-00627-x. Epub 2022 May 31.
8
Discovering spatial-temporal patterns via complex networks in investigating COVID-19 pandemic in the United States.
Sustain Cities Soc. 2022 Feb;77:103508. doi: 10.1016/j.scs.2021.103508. Epub 2021 Nov 10.
9
On the statistical significance of communities from weighted graphs.
Sci Rep. 2021 Oct 13;11(1):20304. doi: 10.1038/s41598-021-99175-2.
10
Unfolding the multiscale structure of networks with dynamical Ollivier-Ricci curvature.
Nat Commun. 2021 Jul 27;12(1):4561. doi: 10.1038/s41467-021-24884-1.

本文引用的文献

1
Model selection for degree-corrected block models.
J Stat Mech. 2014 May;2014(5). doi: 10.1088/1742-5468/2014/05/P05007.
2
Spectral redemption in clustering sparse networks.
Proc Natl Acad Sci U S A. 2013 Dec 24;110(52):20935-40. doi: 10.1073/pnas.1312486110. Epub 2013 Nov 25.
3
Consensus clustering in complex networks.
Sci Rep. 2012;2:336. doi: 10.1038/srep00336. Epub 2012 Mar 27.
4
Asymptotic analysis of the stochastic block model for modular networks and its algorithmic applications.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Dec;84(6 Pt 2):066106. doi: 10.1103/PhysRevE.84.066106. Epub 2011 Dec 12.
5
Inference and phase transitions in the detection of modules in sparse networks.
Phys Rev Lett. 2011 Aug 5;107(6):065701. doi: 10.1103/PhysRevLett.107.065701. Epub 2011 Aug 2.
6
Finding statistically significant communities in networks.
PLoS One. 2011 Apr 29;6(4):e18961. doi: 10.1371/journal.pone.0018961.
7
Stochastic blockmodels and community structure in networks.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Jan;83(1 Pt 2):016107. doi: 10.1103/PhysRevE.83.016107. Epub 2011 Jan 21.
8
Statistical significance of communities in networks.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Apr;81(4 Pt 2):046110. doi: 10.1103/PhysRevE.81.046110. Epub 2010 Apr 20.
9
Performance of modularity maximization in practical contexts.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Apr;81(4 Pt 2):046106. doi: 10.1103/PhysRevE.81.046106. Epub 2010 Apr 15.
10
Benchmark graphs for testing community detection algorithms.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Oct;78(4 Pt 2):046110. doi: 10.1103/PhysRevE.78.046110. Epub 2008 Oct 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验