Suppr超能文献

基于加权图的社区统计显著性。

On the statistical significance of communities from weighted graphs.

机构信息

School of Software, Dalian University of Technology, Dalian, 116024, China.

Key Laboratory for Ubiquitous Network and Service Software of Liaoning Province, Dalian, 116024, China.

出版信息

Sci Rep. 2021 Oct 13;11(1):20304. doi: 10.1038/s41598-021-99175-2.

Abstract

Community detection is a fundamental procedure in the analysis of network data. Despite decades of research, there is still no consensus on the definition of a community. To analytically test the realness of a candidate community in weighted networks, we present a general formulation from a significance testing perspective. In this new formulation, the edge-weight is modeled as a censored observation due to the noisy characteristics of real networks. In particular, the edge-weights of missing links are incorporated as well, which are specified to be zeros based on the assumption that they are truncated or unobserved. Thereafter, the community significance assessment issue is formulated as a two-sample test problem on censored data. More precisely, the Logrank test is employed to conduct the significance testing on two sets of augmented edge-weights: internal weight set and external weight set. The presented approach is evaluated on both weighted networks and un-weighted networks. The experimental results show that our method can outperform prior widely used evaluation metrics on the task of individual community validation.

摘要

社区发现是网络数据分析的基本过程。尽管经过了几十年的研究,但对于社区的定义仍然没有共识。为了从显著性检验的角度分析加权网络中候选社区的真实性,我们提出了一种通用的公式化方法。在这个新的公式中,由于真实网络的噪声特性,将边权重建模为有删失的观测值。特别是,还包含缺失链路的边权重,根据它们被截断或未被观测的假设,将它们指定为零。此后,社区显著性评估问题被公式化为有删失数据的两样本检验问题。更准确地说,使用对数秩检验对两组扩充的边权重进行显著性检验:内部权重集和外部权重集。所提出的方法在加权网络和非加权网络上进行了评估。实验结果表明,我们的方法在单个社区验证任务上的性能优于先前广泛使用的评估指标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/279f/8514603/81c29524c213/41598_2021_99175_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验