Suppr超能文献

从蛋白质序列中对短线性基序进行计算预测。

Computational prediction of short linear motifs from protein sequences.

作者信息

Edwards Richard J, Palopoli Nicolas

机构信息

School of Biotechnology and Biomolecular Sciences, University of New South Wales, Room 263B, Biological Sciences Building, Building D26, Sydney, NSW, 2052, Australia,

出版信息

Methods Mol Biol. 2015;1268:89-141. doi: 10.1007/978-1-4939-2285-7_6.

Abstract

Short Linear Motifs (SLiMs) are functional protein microdomains that typically mediate interactions between a short linear region in one protein and a globular domain in another. SLiMs usually occur in structurally disordered regions and mediate low affinity interactions. Most SLiMs are 3-15 amino acids in length and have 2-5 defined positions, making them highly likely to occur by chance and extremely difficult to identify. Nevertheless, our knowledge of SLiMs and capacity to predict them from protein sequence data using computational methods has advanced dramatically over the past decade. By considering the biological, structural, and evolutionary context of SLiM occurrences, it is possible to differentiate functional instances from chance matches in many cases and to identify new regions of proteins that have the features consistent with a SLiM-mediated interaction. Their simplicity also makes SLiMs evolutionarily labile and prone to independent origins on different sequence backgrounds through convergent evolution, which can be exploited for predicting novel SLiMs in proteins that share a function or interaction partner. In this review, we explore our current knowledge of SLiMs and how it can be applied to the task of predicting them computationally from protein sequences. Rather than focusing on specific SLiM prediction tools, we provide an overview of the methods available and concentrate on principles that should continue to be paramount even in the light of future developments. We consider the relative merits of using regular expressions or profiles for SLiM discovery and discuss the main considerations for both predicting new instances of known SLiMs, and de novo prediction of novel SLiMs. In particular, we highlight the importance of correctly modelling evolutionary relationships and the probability of false positive predictions.

摘要

短线性基序(SLiMs)是功能性蛋白质微结构域,通常介导一种蛋白质中的短线性区域与另一种蛋白质中的球状结构域之间的相互作用。SLiMs通常出现在结构无序区域,介导低亲和力相互作用。大多数SLiMs长度为3 - 15个氨基酸,具有2 - 5个确定的位置,这使得它们很可能偶然出现且极难识别。然而,在过去十年中,我们对SLiMs的认识以及使用计算方法从蛋白质序列数据预测它们的能力有了显著进展。通过考虑SLiMs出现的生物学、结构和进化背景,在许多情况下有可能将功能性实例与偶然匹配区分开来,并识别出具有与SLiM介导的相互作用一致特征的蛋白质新区域。它们的简单性也使得SLiMs在进化上不稳定,并且容易通过趋同进化在不同的序列背景上独立起源,这可用于预测具有共同功能或相互作用伙伴的蛋白质中的新型SLiMs。在这篇综述中,我们探讨了我们目前对SLiMs的认识以及如何将其应用于从蛋白质序列进行计算预测的任务。我们不是专注于特定的SLiM预测工具,而是概述可用的方法,并专注于即使在未来发展的情况下仍应至关重要的原则。我们考虑使用正则表达式或轮廓进行SLiM发现的相对优点,并讨论预测已知SLiMs的新实例和从头预测新型SLiMs的主要考虑因素。特别是,我们强调正确建模进化关系和误报预测概率的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验