Suppr超能文献

开发一种可细胞降解的聚乙二醇水凝胶以促进关节软骨细胞外基质沉积。

Development of a cellularly degradable PEG hydrogel to promote articular cartilage extracellular matrix deposition.

作者信息

Sridhar Balaji V, Brock John L, Silver Jason S, Leight Jennifer L, Randolph Mark A, Anseth Kristi S

机构信息

Department of Chemical and Biological Engineering and the Biofrontiers Institute, University of Colorado, 596 UCB, Boulder, CO, 80303-0596, USA.

出版信息

Adv Healthc Mater. 2015 Apr 2;4(5):702-13. doi: 10.1002/adhm.201400695. Epub 2015 Jan 21.

Abstract

Healing articular cartilage remains a significant clinical challenge because of its limited self-healing capacity. While delivery of autologous chondrocytes to cartilage defects has received growing interest, combining cell-based therapies with scaffolds that capture aspects of native tissue and promote cell-mediated remodeling could improve outcomes. Currently, scaffold-based therapies with encapsulated chondrocytes permit matrix production; however, resorption of the scaffold does not match the rate of production by cells leading to generally low extracellular matrix outputs. Here, a poly (ethylene glycol) (PEG) norbornene hydrogel is functionalized with thiolated transforming growth factor (TGF-β1) and cross-linked by an MMP-degradable peptide. Chondrocytes are co-encapsulated with a smaller population of mesenchymal stem cells, with the goal of stimulating matrix production and increasing bulk mechanical properties of the scaffold. The co-encapsulated cells cleave the MMP-degradable target sequence more readily than either cell population alone. Relative to non-degradable gels, cellularly degraded materials show significantly increased glycosaminoglycan and collagen deposition over just 14 d of culture, while maintaining high levels of viability and producing a more widely-distributed matrix. These results indicate the potential of an enzymatically degradable, peptide-functionalized PEG hydrogel to locally influence and promote cartilage matrix production over a short period. Scaffolds that permit cell-mediated remodeling may be useful in designing treatment options for cartilage tissue engineering applications.

摘要

由于关节软骨自身修复能力有限,修复关节软骨仍是一项重大的临床挑战。虽然将自体软骨细胞输送到软骨缺损处已越来越受到关注,但将基于细胞的疗法与能够模拟天然组织特性并促进细胞介导的重塑的支架相结合,可能会改善治疗效果。目前,含有包封软骨细胞的支架疗法能够促进基质生成;然而,支架的吸收速度与细胞的生成速度不匹配,导致细胞外基质的总体产出较低。在此,一种聚(乙二醇)(PEG)降冰片烯水凝胶用硫醇化转化生长因子(TGF-β1)进行功能化,并通过基质金属蛋白酶(MMP)可降解肽交联。软骨细胞与少量间充质干细胞共同封装,目的是刺激基质生成并提高支架的整体力学性能。与单独的任何一种细胞群体相比,共同封装的细胞更容易切割MMP可降解的靶序列。相对于不可降解的水凝胶,在仅14天的培养过程中,细胞降解的材料显示出糖胺聚糖和胶原蛋白沉积显著增加,同时保持高活力水平并产生分布更广泛的基质。这些结果表明,一种可酶促降解、肽功能化的PEG水凝胶在短期内局部影响和促进软骨基质生成方面具有潜力。允许细胞介导重塑的支架可能有助于设计软骨组织工程应用的治疗方案。

相似文献

1
Development of a cellularly degradable PEG hydrogel to promote articular cartilage extracellular matrix deposition.
Adv Healthc Mater. 2015 Apr 2;4(5):702-13. doi: 10.1002/adhm.201400695. Epub 2015 Jan 21.
2
Covalently tethered TGF-β1 with encapsulated chondrocytes in a PEG hydrogel system enhances extracellular matrix production.
J Biomed Mater Res A. 2014 Dec;102(12):4464-72. doi: 10.1002/jbm.a.35115. Epub 2014 Feb 26.
5
Physiological osmolarities do not enhance long-term tissue synthesis in chondrocyte-laden degradable poly(ethylene glycol) hydrogels.
J Biomed Mater Res A. 2015 Jun;103(6):2186-92. doi: 10.1002/jbm.a.35329. Epub 2014 Sep 24.
6
Nondestructive evaluation of a new hydrolytically degradable and photo-clickable PEG hydrogel for cartilage tissue engineering.
Acta Biomater. 2016 Jul 15;39:1-11. doi: 10.1016/j.actbio.2016.05.015. Epub 2016 May 11.
9
Intact vitreous humor as a potential extracellular matrix hydrogel for cartilage tissue engineering applications.
Acta Biomater. 2019 Feb;85:117-130. doi: 10.1016/j.actbio.2018.12.022. Epub 2018 Dec 18.
10
Age impacts extracellular matrix metabolism in chondrocytes encapsulated in degradable hydrogels.
Biomed Mater. 2012 Apr;7(2):024111. doi: 10.1088/1748-6041/7/2/024111. Epub 2012 Mar 29.

引用本文的文献

2
Design and Characterization of Thioester Networks with Adaptable and Enzymatically Degradable Cross-Links.
Macromolecules. 2025 Apr 8;58(8):3872-3885. doi: 10.1021/acs.macromol.5c00487. eCollection 2025 Apr 22.
3
A versatile platform based on matrix metalloproteinase-sensitive peptides for novel diagnostic and therapeutic strategies in arthritis.
Bioact Mater. 2025 Jan 18;47:100-120. doi: 10.1016/j.bioactmat.2025.01.011. eCollection 2025 May.
5
3D Bioprinting Highly Elastic PEG-PCL-DA Hydrogel for Soft Tissue Fabrication and Biomechanical Stimulation.
Adv Funct Mater. 2024 Jul 10;34(28). doi: 10.1002/adfm.202313942. Epub 2024 Mar 13.
6
Innovative hydrogel solutions for articular cartilage regeneration: a comprehensive review.
Int J Surg. 2024 Dec 1;110(12):7984-8001. doi: 10.1097/JS9.0000000000002076.
9
Tailoring the Degradation Time of Polycationic PEG-Based Hydrogels toward Dynamic Cell Culture Matrices.
ACS Appl Bio Mater. 2024 Apr 15;7(4):2402-2412. doi: 10.1021/acsabm.4c00057. Epub 2024 Mar 12.
10
Peptide-Based Biomaterials for Bone and Cartilage Regeneration.
Biomedicines. 2024 Jan 29;12(2):313. doi: 10.3390/biomedicines12020313.

本文引用的文献

1
A Versatile Synthetic Extracellular Matrix Mimic via Thiol-Norbornene Photopolymerization.
Adv Mater. 2009 Dec 28;21(48):5005-5010. doi: 10.1002/adma.200901808. Epub 2009 Oct 7.
3
Covalently tethered TGF-β1 with encapsulated chondrocytes in a PEG hydrogel system enhances extracellular matrix production.
J Biomed Mater Res A. 2014 Dec;102(12):4464-72. doi: 10.1002/jbm.a.35115. Epub 2014 Feb 26.
4
Direct measurement of matrix metalloproteinase activity in 3D cellular microenvironments using a fluorogenic peptide substrate.
Biomaterials. 2013 Oct;34(30):7344-52. doi: 10.1016/j.biomaterials.2013.06.023. Epub 2013 Jul 2.
5
An improved cryosection method for polyethylene glycol hydrogels used in tissue engineering.
Tissue Eng Part C Methods. 2013 Oct;19(10):794-801. doi: 10.1089/ten.TEC.2012.0460. Epub 2013 Apr 19.
6
Effects of serum and compressive loading on the cartilage matrix synthesis and spatiotemporal deposition around chondrocytes in 3D culture.
Tissue Eng Part A. 2013 May;19(9-10):1199-208. doi: 10.1089/ten.tea.2012.0559. Epub 2013 Feb 14.
7
Three-dimensional hMSC motility within peptide-functionalized PEG-based hydrogels of varying adhesivity and crosslinking density.
Acta Biomater. 2013 May;9(5):6381-92. doi: 10.1016/j.actbio.2013.01.026. Epub 2013 Feb 1.
8
Unlike bone, cartilage regeneration remains elusive.
Science. 2012 Nov 16;338(6109):917-21. doi: 10.1126/science.1222454.
10
Trophic effects of mesenchymal stem cells in chondrocyte co-cultures are independent of culture conditions and cell sources.
Tissue Eng Part A. 2012 Aug;18(15-16):1542-51. doi: 10.1089/ten.TEA.2011.0715. Epub 2012 Apr 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验