Suppr超能文献

鉴定增强叶酸底物结合并限制质子偶联叶酸转运蛋白(PCFT-SLC46A1)振荡的酪氨酸残基。

Identification of Tyr residues that enhance folate substrate binding and constrain oscillation of the proton-coupled folate transporter (PCFT-SLC46A1).

作者信息

Visentin Michele, Unal Ersin Selcuk, Najmi Mitra, Fiser Andras, Zhao Rongbao, Goldman I David

机构信息

Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York;

Department of Medicine, Albert Einstein College of Medicine, Bronx, New York;

出版信息

Am J Physiol Cell Physiol. 2015 Apr 15;308(8):C631-41. doi: 10.1152/ajpcell.00238.2014. Epub 2015 Jan 21.

Abstract

The proton-coupled folate transporter (PCFT) mediates intestinal folate absorption and transport of folates across the choroid plexus. This study focuses on the role of Tyr residues in PCFT function. The substituted Cys-accessibility method identified four Tyr residues (Y291, Y362, Y315, and Y414) that are accessible to the extracellular compartment; three of these (Y291, Y362, and Y315) are located within or near the folate binding pocket. When the Tyr residues were replaced with Cys or Ala, these mutants showed similar (up to 6-fold) increases in influx Vmax and Kt/Ki for [(3)H]methotrexate and [(3)H]pemetrexed. When the Tyr residues were replaced with Phe, these changes were moderated or absent. When Y315A PCFT was used as representative of the mutants and [(3)H]pemetrexed as the transport substrate, this substitution did not increase the efflux rate constant. Furthermore, neither influx nor efflux mediated by Y315A PCFT was transstimulated by the presence of substrate in the opposite compartment; however, substantial bidirectional transstimulation of transport was mediated by wild-type PCFT. This resulted in a threefold greater efflux rate constant for cells that express wild-type PCFT than for cells that express Y315 PCFT under exchange conditions. These data suggest that these Tyr residues, possibly through their rigid side chains, secure the carrier in a high-affinity state for its folate substrates. However, this may be achieved at the expense of constraining the carrier's mobility, thereby decreasing the rate at which the protein oscillates between its conformational states. The Vmax generated by these Tyr mutants may be so rapid that further augmentation during transstimulation may not be possible.

摘要

质子偶联叶酸转运体(PCFT)介导肠道叶酸吸收以及叶酸穿过脉络丛的转运。本研究聚焦于酪氨酸(Tyr)残基在PCFT功能中的作用。取代半胱氨酸可及性方法鉴定出四个可与细胞外区室接触的Tyr残基(Y291、Y362、Y315和Y414);其中三个(Y291、Y362和Y315)位于叶酸结合口袋内或附近。当Tyr残基被半胱氨酸或丙氨酸取代时,这些突变体对[³H]甲氨蝶呤和[³H]培美曲塞的流入Vmax和Kt/Ki表现出相似的(高达6倍)增加。当Tyr残基被苯丙氨酸取代时,这些变化减弱或消失。以Y315A PCFT作为突变体的代表,[³H]培美曲塞作为转运底物时,这种取代并未增加流出速率常数。此外,Y315A PCFT介导的流入和流出均未因相反区室中底物的存在而受到转刺激;然而,野生型PCFT介导了显著的双向转运转刺激。这导致在交换条件下,表达野生型PCFT的细胞的流出速率常数比表达Y315 PCFT的细胞高三倍。这些数据表明,这些Tyr残基可能通过其刚性侧链将载体固定在对其叶酸底物的高亲和力状态。然而,这可能是以限制载体的流动性为代价实现的,从而降低了蛋白质在其构象状态之间振荡的速率。这些Tyr突变体产生的Vmax可能非常快,以至于在转刺激过程中可能无法进一步增加。

相似文献

1
Identification of Tyr residues that enhance folate substrate binding and constrain oscillation of the proton-coupled folate transporter (PCFT-SLC46A1).
Am J Physiol Cell Physiol. 2015 Apr 15;308(8):C631-41. doi: 10.1152/ajpcell.00238.2014. Epub 2015 Jan 21.
2
Role of the tryptophan residues in proton-coupled folate transporter (PCFT-SLC46A1) function.
Am J Physiol Cell Physiol. 2016 Jul 1;311(1):C150-7. doi: 10.1152/ajpcell.00084.2016. Epub 2016 Jun 1.
3
Properties of the Arg376 residue of the proton-coupled folate transporter (PCFT-SLC46A1) and a glutamine mutant causing hereditary folate malabsorption.
Am J Physiol Cell Physiol. 2010 Nov;299(5):C1153-61. doi: 10.1152/ajpcell.00113.2010. Epub 2010 Aug 4.
4
Functional roles of the A335 and G338 residues of the proton-coupled folate transporter (PCFT-SLC46A1) mutated in hereditary folate malabsorption.
Am J Physiol Cell Physiol. 2012 Oct 15;303(8):C834-42. doi: 10.1152/ajpcell.00171.2012. Epub 2012 Jul 25.
7
A P425R mutation of the proton-coupled folate transporter causing hereditary folate malabsorption produces a highly selective alteration in folate binding.
Am J Physiol Cell Physiol. 2012 May 1;302(9):C1405-12. doi: 10.1152/ajpcell.00435.2011. Epub 2012 Feb 15.
8
Role of the fourth transmembrane domain in proton-coupled folate transporter function as assessed by the substituted cysteine accessibility method.
Am J Physiol Cell Physiol. 2013 Jun 15;304(12):C1159-67. doi: 10.1152/ajpcell.00353.2012. Epub 2013 Apr 3.
9
A proton-coupled folate transporter mutation causing hereditary folate malabsorption locks the protein in an inward-open conformation.
J Biol Chem. 2020 Nov 13;295(46):15650-15661. doi: 10.1074/jbc.RA120.014757. Epub 2020 Sep 6.

引用本文的文献

1
Mechanistic insights into mutation in the proton-coupled folate transporter (SLC46A1) causing hereditary folate malabsorption.
J Biol Chem. 2025 Mar;301(3):108280. doi: 10.1016/j.jbc.2025.108280. Epub 2025 Feb 7.
3
Biology and therapeutic applications of the proton-coupled folate transporter.
Expert Opin Drug Metab Toxicol. 2022 Oct;18(10):695-706. doi: 10.1080/17425255.2022.2136071. Epub 2022 Oct 20.
5
A proton-coupled folate transporter mutation causing hereditary folate malabsorption locks the protein in an inward-open conformation.
J Biol Chem. 2020 Nov 13;295(46):15650-15661. doi: 10.1074/jbc.RA120.014757. Epub 2020 Sep 6.
6
Substitutions that lock and unlock the proton-coupled folate transporter (PCFT-SLC46A1) in an inward-open conformation.
J Biol Chem. 2019 May 3;294(18):7245-7258. doi: 10.1074/jbc.RA118.005533. Epub 2019 Mar 11.
7
Hereditary folate malabsorption due to a mutation in the external gate of the proton-coupled folate transporter SLC46A1.
Blood Adv. 2018 Jan 5;2(1):61-68. doi: 10.1182/bloodadvances.2017012690. eCollection 2018 Jan 9.
8
Substituted-cysteine accessibility and cross-linking identify an exofacial cleft in the 7th and 8th helices of the proton-coupled folate transporter (SLC46A1).
Am J Physiol Cell Physiol. 2018 Mar 1;314(3):C289-C296. doi: 10.1152/ajpcell.00215.2017. Epub 2017 Nov 22.
9
The promise and challenges of exploiting the proton-coupled folate transporter for selective therapeutic targeting of cancer.
Cancer Chemother Pharmacol. 2018 Jan;81(1):1-15. doi: 10.1007/s00280-017-3473-8. Epub 2017 Nov 10.

本文引用的文献

1
The intestinal absorption of folates.
Annu Rev Physiol. 2014;76:251-74. doi: 10.1146/annurev-physiol-020911-153251.
3
Structures of human folate receptors reveal biological trafficking states and diversity in folate and antifolate recognition.
Proc Natl Acad Sci U S A. 2013 Sep 17;110(38):15180-8. doi: 10.1073/pnas.1308827110. Epub 2013 Aug 9.
4
Structures of P-glycoprotein reveal its conformational flexibility and an epitope on the nucleotide-binding domain.
Proc Natl Acad Sci U S A. 2013 Aug 13;110(33):13386-91. doi: 10.1073/pnas.1309275110. Epub 2013 Jul 30.
5
The membrane transport and polyglutamation of pralatrexate: a new-generation dihydrofolate reductase inhibitor.
Cancer Chemother Pharmacol. 2013 Sep;72(3):597-606. doi: 10.1007/s00280-013-2231-9. Epub 2013 Jul 24.
6
Structural basis for molecular recognition of folic acid by folate receptors.
Nature. 2013 Aug 22;500(7463):486-9. doi: 10.1038/nature12327. Epub 2013 Jul 14.
8
Role of the fourth transmembrane domain in proton-coupled folate transporter function as assessed by the substituted cysteine accessibility method.
Am J Physiol Cell Physiol. 2013 Jun 15;304(12):C1159-67. doi: 10.1152/ajpcell.00353.2012. Epub 2013 Apr 3.
9
The human proton-coupled folate transporter: Biology and therapeutic applications to cancer.
Cancer Biol Ther. 2012 Dec;13(14):1355-73. doi: 10.4161/cbt.22020. Epub 2012 Sep 6.
10
Functional roles of the A335 and G338 residues of the proton-coupled folate transporter (PCFT-SLC46A1) mutated in hereditary folate malabsorption.
Am J Physiol Cell Physiol. 2012 Oct 15;303(8):C834-42. doi: 10.1152/ajpcell.00171.2012. Epub 2012 Jul 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验