Suppr超能文献

质子偶联叶酸转运体(SLC46A1)第八跨膜域的残基在确定水相转运途径和叶酸底物结合方面发挥着重要作用。

Residues in the eighth transmembrane domain of the proton-coupled folate transporter (SLC46A1) play an important role in defining the aqueous translocation pathway and in folate substrate binding.

机构信息

Department of Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, United States; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, United States.

Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY 10461, United States; Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, United States.

出版信息

Biochim Biophys Acta Biomembr. 2017 Nov;1859(11):2193-2202. doi: 10.1016/j.bbamem.2017.08.006. Epub 2017 Aug 9.

Abstract

The proton-coupled folate transporter (PCFT-SLC46A1) is required for intestinal folate absorption and folate transport across the choroid plexus. This report addresses the structure/function of the 8th transmembrane helix. Based upon biotinylation of cysteine-substituted residues by MTSEA-biotin, 14 contiguous exofacial residues to Leu316 were accessible to the extracellular compartment of the 23 residues in this helix (Leu303-Leu325). Pemetrexed blocked biotinylation of six Cys-substituted residues deep within the helix implicating an important role for this region in folate binding. Accessibility decreased at 4°C vs RT. The influx K, K and V were markedly increased for the P314C mutant, similar to what was observed for Y315A and Y315P mutants. However, the K, alone, was increased for the P314Y mutant. To correlate these observations with PCFT structural changes during the transport cycle, homology models were built for PCFT based upon the recently reported structures of bovine and rodent GLUT5 fructose transporters in the inward-open and outward- open conformations, respectively. The models predict substantial structural alterations in the exofacial region of the eighth transmembrane helix as it cycles between its conformational states that can account for the extended and contiguous aqueous accessibility of this region of the helix. Further, a helix break in one of the two conformations can account for the critical roles Pro314 and Tyr315, located in this region, play in PCFT function. The data indicates that the 8th transmembrane helix of PCFT plays an important role in defining the aqueous channel and the folate binding pocket.

摘要

质子偶联叶酸转运蛋白(PCFT-SLC46A1)是肠道叶酸吸收和叶酸通过脉络丛转运所必需的。本报告介绍了第 8 个跨膜螺旋的结构/功能。基于 MTSEA-biotin 对半胱氨酸取代残基的生物素化,该螺旋中 23 个残基的外表面有 14 个连续的外位残基(Leu303-Leu325)可到达细胞外腔。培美曲塞可阻断该螺旋中六个深置 Cys 取代残基的生物素化,提示该区域在叶酸结合中具有重要作用。4°C 时的可及性比 RT 时降低。P314C 突变体的 K、K 和 V 显著增加,与 Y315A 和 Y315P 突变体观察到的相似。然而,P314Y 突变体的 K 仅增加。为了将这些观察结果与 PCFT 在转运循环过程中的结构变化相关联,根据最近报道的牛和啮齿动物 GLUT5 果糖转运体在内向开放和外向开放构象中的结构,构建了基于同源性的 PCFT 模型。这些模型预测,在第八个跨膜螺旋的外表面区域,在其构象状态之间发生了实质性的结构变化,这可以解释该螺旋区域的连续亲水可及性。此外,在两种构象之一中,螺旋的断裂可以解释位于该区域的 Pro314 和 Tyr315 在 PCFT 功能中所起的关键作用。数据表明,PCFT 的第 8 个跨膜螺旋在定义水通道和叶酸结合口袋方面发挥着重要作用。

相似文献

2
Substituted-cysteine accessibility and cross-linking identify an exofacial cleft in the 7th and 8th helices of the proton-coupled folate transporter (SLC46A1).
Am J Physiol Cell Physiol. 2018 Mar 1;314(3):C289-C296. doi: 10.1152/ajpcell.00215.2017. Epub 2017 Nov 22.
3
Role of the tryptophan residues in proton-coupled folate transporter (PCFT-SLC46A1) function.
Am J Physiol Cell Physiol. 2016 Jul 1;311(1):C150-7. doi: 10.1152/ajpcell.00084.2016. Epub 2016 Jun 1.
4
Identification of Tyr residues that enhance folate substrate binding and constrain oscillation of the proton-coupled folate transporter (PCFT-SLC46A1).
Am J Physiol Cell Physiol. 2015 Apr 15;308(8):C631-41. doi: 10.1152/ajpcell.00238.2014. Epub 2015 Jan 21.
6
Role of the fourth transmembrane domain in proton-coupled folate transporter function as assessed by the substituted cysteine accessibility method.
Am J Physiol Cell Physiol. 2013 Jun 15;304(12):C1159-67. doi: 10.1152/ajpcell.00353.2012. Epub 2013 Apr 3.
7
Substitutions that lock and unlock the proton-coupled folate transporter (PCFT-SLC46A1) in an inward-open conformation.
J Biol Chem. 2019 May 3;294(18):7245-7258. doi: 10.1074/jbc.RA118.005533. Epub 2019 Mar 11.
8
Identification of an Extracellular Gate for the Proton-coupled Folate Transporter (PCFT-SLC46A1) by Cysteine Cross-linking.
J Biol Chem. 2016 Apr 8;291(15):8162-72. doi: 10.1074/jbc.M115.693929. Epub 2016 Feb 16.
9
Functional roles of the A335 and G338 residues of the proton-coupled folate transporter (PCFT-SLC46A1) mutated in hereditary folate malabsorption.
Am J Physiol Cell Physiol. 2012 Oct 15;303(8):C834-42. doi: 10.1152/ajpcell.00171.2012. Epub 2012 Jul 25.
10
Functional and mechanistic roles of the human proton-coupled folate transporter transmembrane domain 6-7 linker.
Biochem J. 2016 Oct 15;473(20):3545-3562. doi: 10.1042/BCJ20160399. Epub 2016 Aug 11.

引用本文的文献

1
Mechanistic insights into mutation in the proton-coupled folate transporter (SLC46A1) causing hereditary folate malabsorption.
J Biol Chem. 2025 Mar;301(3):108280. doi: 10.1016/j.jbc.2025.108280. Epub 2025 Feb 7.
2
Biology and therapeutic applications of the proton-coupled folate transporter.
Expert Opin Drug Metab Toxicol. 2022 Oct;18(10):695-706. doi: 10.1080/17425255.2022.2136071. Epub 2022 Oct 20.
4
Impact of nanodisc lipid composition on cell-free expression of proton-coupled folate transporter.
PLoS One. 2021 Nov 18;16(11):e0253184. doi: 10.1371/journal.pone.0253184. eCollection 2021.
5
A proton-coupled folate transporter mutation causing hereditary folate malabsorption locks the protein in an inward-open conformation.
J Biol Chem. 2020 Nov 13;295(46):15650-15661. doi: 10.1074/jbc.RA120.014757. Epub 2020 Sep 6.
6
Substitutions that lock and unlock the proton-coupled folate transporter (PCFT-SLC46A1) in an inward-open conformation.
J Biol Chem. 2019 May 3;294(18):7245-7258. doi: 10.1074/jbc.RA118.005533. Epub 2019 Mar 11.
7
Hereditary folate malabsorption due to a mutation in the external gate of the proton-coupled folate transporter SLC46A1.
Blood Adv. 2018 Jan 5;2(1):61-68. doi: 10.1182/bloodadvances.2017012690. eCollection 2018 Jan 9.
8
Substituted-cysteine accessibility and cross-linking identify an exofacial cleft in the 7th and 8th helices of the proton-coupled folate transporter (SLC46A1).
Am J Physiol Cell Physiol. 2018 Mar 1;314(3):C289-C296. doi: 10.1152/ajpcell.00215.2017. Epub 2017 Nov 22.
9
The promise and challenges of exploiting the proton-coupled folate transporter for selective therapeutic targeting of cancer.
Cancer Chemother Pharmacol. 2018 Jan;81(1):1-15. doi: 10.1007/s00280-017-3473-8. Epub 2017 Nov 10.

本文引用的文献

2
Impact of posttranslational modifications of engineered cysteines on the substituted cysteine accessibility method: evidence for glutathionylation.
Am J Physiol Cell Physiol. 2017 Apr 1;312(4):C517-C526. doi: 10.1152/ajpcell.00350.2016. Epub 2017 Jan 25.
4
Experimentally optimized threading structures of the proton-coupled folate transporter.
FEBS Open Bio. 2016 Feb 22;6(3):216-30. doi: 10.1002/2211-5463.12041. eCollection 2016 Mar.
5
Identification of an Extracellular Gate for the Proton-coupled Folate Transporter (PCFT-SLC46A1) by Cysteine Cross-linking.
J Biol Chem. 2016 Apr 8;291(15):8162-72. doi: 10.1074/jbc.M115.693929. Epub 2016 Feb 16.
6
Structure and mechanism of the mammalian fructose transporter GLUT5.
Nature. 2015 Oct 15;526(7573):397-401. doi: 10.1038/nature14909. Epub 2015 Sep 30.
7
Identification of Tyr residues that enhance folate substrate binding and constrain oscillation of the proton-coupled folate transporter (PCFT-SLC46A1).
Am J Physiol Cell Physiol. 2015 Apr 15;308(8):C631-41. doi: 10.1152/ajpcell.00238.2014. Epub 2015 Jan 21.
8
Structural basis for the facilitative diffusion mechanism by SemiSWEET transporter.
Nat Commun. 2015 Jan 19;6:6112. doi: 10.1038/ncomms7112.
9
Crystal structure of the human glucose transporter GLUT1.
Nature. 2014 Jun 5;510(7503):121-5. doi: 10.1038/nature13306. Epub 2014 May 18.
10
Delineating the extracellular water-accessible surface of the proton-coupled folate transporter.
PLoS One. 2013 Oct 18;8(10):e78301. doi: 10.1371/journal.pone.0078301. eCollection 2013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验