Suppr超能文献

金黄色葡萄球菌谷氨酰胺依赖性酰胺转移酶(GatCAB)中沿两条分子内隧道的氨转移的计算分析。

Computational analysis of ammonia transfer along two intramolecular tunnels in Staphylococcus aureus glutamine-dependent amidotransferase (GatCAB).

作者信息

Dewage Sajeewa Walimuni, Cisneros G Andrés

机构信息

Department of Chemistry, Wayne State University , 5101 Cass Avenue, Detroit, Michigan 48202, United States.

出版信息

J Phys Chem B. 2015 Mar 5;119(9):3669-77. doi: 10.1021/jp5123568. Epub 2015 Feb 20.

Abstract

Most bacteria and all archaea misacylate the tRNAs corresponding to Asn and Gln with Asp and Glu (Asp-tRNA(Asn) and Glu-tRNA(Gln)).The GatCAB enzyme of most bacteria converts misacylated Glu-tRNA(Gln) to Gln-tRNA(Gln) in order to enable the incorporation of glutamine during protein synthesis. The conversion process involves the intramolecular transfer of ammonia between two spatially separated active sites. This study presents a computational analysis of the two putative intramolecular tunnels that have been suggested to describe the ammonia transfer between the two active sites. Molecular dynamics simulations have been performed for wild-type GatCAB of S. aureus and its mutants: T175(A)V, K88(B)R, E125(B)D, and E125(B)Q. The two tunnels have been analyzed in terms of free energy of ammonia transfer along them. The probability of occurrence of each type of tunnel and the variation of the probability for wild-type GatCAB and its mutants is also discussed.

摘要

大多数细菌和所有古细菌会用天冬氨酸(Asp)和谷氨酸(Glu)对与天冬酰胺(Asn)和谷氨酰胺(Gln)相对应的tRNA进行错误酰化(Asp-tRNA(Asn)和Glu-tRNA(Gln))。大多数细菌的GatCAB酶会将错误酰化的Glu-tRNA(Gln)转化为Gln-tRNA(Gln),以便在蛋白质合成过程中掺入谷氨酰胺。该转化过程涉及氨在两个空间分离的活性位点之间的分子内转移。本研究对两条推测的分子内隧道进行了计算分析,这两条隧道被认为可描述两个活性位点之间的氨转移。对金黄色葡萄球菌的野生型GatCAB及其突变体:T175(A)V、K88(B)R、E125(B)D和E125(B)Q进行了分子动力学模拟。根据氨沿这两条隧道转移的自由能对它们进行了分析。还讨论了每种类型隧道出现的概率以及野生型GatCAB及其突变体概率的变化。

相似文献

2
Insights into tRNA-dependent amidotransferase evolution and catalysis from the structure of the Aquifex aeolicus enzyme.
J Mol Biol. 2009 Aug 28;391(4):703-16. doi: 10.1016/j.jmb.2009.06.014. Epub 2009 Jun 9.
3
Characterization of tunnel mutants reveals a catalytic step in ammonia delivery by an aminoacyl-tRNA amidotransferase.
FEBS Lett. 2016 Sep;590(18):3122-32. doi: 10.1002/1873-3468.12347. Epub 2016 Aug 23.
6
Two distinct regions in Staphylococcus aureus GatCAB guarantee accurate tRNA recognition.
Nucleic Acids Res. 2010 Jan;38(2):672-82. doi: 10.1093/nar/gkp955. Epub 2009 Nov 11.
7
Methanothermobacter thermautotrophicus tRNA Gln confines the amidotransferase GatCAB to asparaginyl-tRNA Asn formation.
J Mol Biol. 2008 Mar 28;377(3):845-53. doi: 10.1016/j.jmb.2008.01.064. Epub 2008 Jan 31.
8
Ammonia channel couples glutaminase with transamidase reactions in GatCAB.
Science. 2006 Jun 30;312(5782):1954-8. doi: 10.1126/science.1127156.
10
Structural basis of RNA-dependent recruitment of glutamine to the genetic code.
Science. 2006 Jun 30;312(5782):1950-4. doi: 10.1126/science.1128470.

引用本文的文献

2
Impact of a Cancer-Associated Mutation on Poly(ADP-ribose) Polymerase1 Inhibition.
J Phys Chem B. 2025 Feb 27;129(8):2175-2186. doi: 10.1021/acs.jpcb.4c07960. Epub 2025 Feb 17.
4
Impact of a Cancer-Associated Mutation on Poly(ADP-ribose) Polymerase1 Inhibition.
bioRxiv. 2024 Nov 15:2024.11.13.623412. doi: 10.1101/2024.11.13.623412.
7
Unusual catalytic strategy by non-heme Fe(ii)/2-oxoglutarate-dependent aspartyl hydroxylase AspH.
Chem Sci. 2024 Feb 5;15(10):3466-3484. doi: 10.1039/d3sc05974j. eCollection 2024 Mar 6.
8
Free Energy Profile Decomposition Analysis for QM/MM Simulations of Enzymatic Reactions.
J Chem Theory Comput. 2023 Nov 28;19(22):8234-8244. doi: 10.1021/acs.jctc.3c00973. Epub 2023 Nov 9.
9
Computational Characterization of the Inhibition Mechanism of Xanthine Oxidoreductase by Topiroxostat.
ACS Catal. 2023 May 5;13(9):6023-6043. doi: 10.1021/acscatal.3c01245. Epub 2023 Apr 18.
10
Investigation of the Inhibition Mechanism of Xanthine Oxidoreductase by Oxipurinol: A Computational Study.
J Chem Inf Model. 2023 Jul 10;63(13):4190-4206. doi: 10.1021/acs.jcim.3c00624. Epub 2023 Jun 15.

本文引用的文献

1
Unidirectional Mechanistic Valved Mechanisms for Ammonia Transport in GatCAB.
J Chem Theory Comput. 2012 Feb 14;8(2):649-60. doi: 10.1021/ct200387u. Epub 2012 Jan 20.
2
Computational study of putative residues involved in DNA synthesis fidelity checking in Thermus aquaticus DNA polymerase I.
Adv Protein Chem Struct Biol. 2014;96:39-75. doi: 10.1016/bs.apcsb.2014.06.003. Epub 2014 Aug 24.
3
Ab initio QM/MM calculations show an intersystem crossing in the hydrogen abstraction step in dealkylation catalyzed by AlkB.
J Phys Chem B. 2013 May 30;117(21):6410-20. doi: 10.1021/jp403116e. Epub 2013 May 16.
4
Computational prediction of residues involved in fidelity checking for DNA synthesis in DNA polymerase I.
Biochemistry. 2012 Mar 27;51(12):2569-78. doi: 10.1021/bi201856m. Epub 2012 Mar 15.
6
Generalized Born model with a simple, robust molecular volume correction.
J Chem Theory Comput. 2007 Jan 1;3(1):156-169. doi: 10.1021/ct600085e.
7
MolProbity: all-atom structure validation for macromolecular crystallography.
Acta Crystallogr D Biol Crystallogr. 2010 Jan;66(Pt 1):12-21. doi: 10.1107/S0907444909042073. Epub 2009 Dec 21.
8
Two distinct regions in Staphylococcus aureus GatCAB guarantee accurate tRNA recognition.
Nucleic Acids Res. 2010 Jan;38(2):672-82. doi: 10.1093/nar/gkp955. Epub 2009 Nov 11.
9
Insights into tRNA-dependent amidotransferase evolution and catalysis from the structure of the Aquifex aeolicus enzyme.
J Mol Biol. 2009 Aug 28;391(4):703-16. doi: 10.1016/j.jmb.2009.06.014. Epub 2009 Jun 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验