Suppr超能文献

表观遗传途径中的自然变异影响拟南芥雌配子前体的特化。

Natural variation in epigenetic pathways affects the specification of female gamete precursors in Arabidopsis.

作者信息

Rodríguez-Leal Daniel, León-Martínez Gloria, Abad-Vivero Ursula, Vielle-Calzada Jean-Philippe

机构信息

Grupo de Desarrollo Reproductivo y Apomixis, Laboratorio Nacional de Genómica para la Biodiversidad y Departamento de Ingeniería Genética de Plantas, Cinvestav Irapuato CP36821 Guanajuato, Mexico.

Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional del Instituto Politécnico Nacional, Unidad Michoacán, CP 59510 Jiquilpan, Mexico.

出版信息

Plant Cell. 2015 Apr;27(4):1034-45. doi: 10.1105/tpc.114.133009. Epub 2015 Mar 31.

Abstract

In angiosperms, the transition to the female gametophytic phase relies on the specification of premeiotic gamete precursors from sporophytic cells in the ovule. In Arabidopsis thaliana, a single diploid cell is specified as the premeiotic female gamete precursor. Here, we show that ecotypes of Arabidopsis exhibit differences in megasporogenesis leading to phenotypes reminiscent of defects in dominant mutations that epigenetically affect the specification of female gamete precursors. Intraspecific hybridization and polyploidy exacerbate these defects, which segregate quantitatively in F2 populations derived from ecotypic hybrids, suggesting that multiple loci control cell specification at the onset of female meiosis. This variation in cell differentiation is influenced by the activity of ARGONAUTE9 (AGO9) and RNA-DEPENDENT RNA POLYMERASE6 (RDR6), two genes involved in epigenetic silencing that control the specification of female gamete precursors. The pattern of transcriptional regulation and localization of AGO9 varies among ecotypes, and abnormal gamete precursors in ovules defective for RDR6 share identity with ectopic gamete precursors found in selected ecotypes. Our results indicate that differences in the epigenetic control of cell specification lead to natural phenotypic variation during megasporogenesis. We propose that this mechanism could be implicated in the emergence and evolution of the reproductive alternatives that prevail in flowering plants.

摘要

在被子植物中,向雌配子体阶段的转变依赖于从胚珠中的孢子体细胞中指定减数分裂前配子前体。在拟南芥中,单个二倍体细胞被指定为减数分裂前雌配子前体。在这里,我们表明拟南芥生态型在大孢子发生过程中表现出差异,导致出现类似于显性突变缺陷的表型,这些显性突变在表观遗传上影响雌配子前体的指定。种内杂交和多倍体加剧了这些缺陷,这些缺陷在生态型杂种衍生的F2群体中呈数量分离,这表明多个基因座在雌配子减数分裂开始时控制细胞指定。细胞分化的这种变化受AGO9(AGO9)和RNA依赖性RNA聚合酶6(RDR6)的活性影响,这两个基因参与表观遗传沉默,控制雌配子前体的指定。AGO9的转录调控模式和定位在不同生态型之间有所不同,RDR6缺陷胚珠中的异常配子前体与选定生态型中发现的异位配子前体具有相同特征。我们的结果表明,细胞指定的表观遗传控制差异导致大孢子发生过程中的自然表型变异。我们提出,这种机制可能与开花植物中普遍存在的生殖选择的出现和进化有关。

相似文献

1
Natural variation in epigenetic pathways affects the specification of female gamete precursors in Arabidopsis.
Plant Cell. 2015 Apr;27(4):1034-45. doi: 10.1105/tpc.114.133009. Epub 2015 Mar 31.
2
Control of female gamete formation by a small RNA pathway in Arabidopsis.
Nature. 2010 Mar 25;464(7288):628-32. doi: 10.1038/nature08828. Epub 2010 Mar 7.
3
A Multigenic Network of ARGONAUTE4 Clade Members Controls Early Megaspore Formation in Arabidopsis.
Genetics. 2016 Nov;204(3):1045-1056. doi: 10.1534/genetics.116.188151. Epub 2016 Sep 2.
4
ARGONAUTE9-dependent silencing of transposable elements in pericentromeric regions of Arabidopsis.
Plant Signal Behav. 2010 Nov;5(11):1476-9. doi: 10.1038/nature08828. Epub 2010 Nov 1.
5
The miRNA822 loaded by ARGONAUTE9 modulates the monosporic female gametogenesis in Arabidopsis thaliana.
Plant Reprod. 2024 Jun;37(2):243-258. doi: 10.1007/s00497-023-00487-2. Epub 2023 Nov 29.
9
The R2R3 MYB transcription factors FOUR LIPS and MYB88 regulate female reproductive development.
J Exp Bot. 2012 Sep;63(15):5545-58. doi: 10.1093/jxb/ers209. Epub 2012 Aug 21.
10
The THO Complex Non-Cell-Autonomously Represses Female Germline Specification through the TAS3-ARF3 Module.
Curr Biol. 2017 Jun 5;27(11):1597-1609.e2. doi: 10.1016/j.cub.2017.05.021. Epub 2017 May 25.

引用本文的文献

1
MADS31 supports female germline development by repressing the post-fertilization programme in cereal ovules.
Nat Plants. 2025 Mar;11(3):543-560. doi: 10.1038/s41477-025-01915-z. Epub 2025 Feb 25.
3
Revisiting the female germline cell development.
Front Plant Sci. 2025 Jan 14;15:1525729. doi: 10.3389/fpls.2024.1525729. eCollection 2024.
4
Germline β-1,3-glucan deposits are required for female gametogenesis in Arabidopsis thaliana.
Nat Commun. 2024 Jul 12;15(1):5875. doi: 10.1038/s41467-024-50143-0.
5
The maternal embrace: the protection of plant embryos.
J Exp Bot. 2024 Jul 23;75(14):4210-4218. doi: 10.1093/jxb/erae071.
6
The miRNA822 loaded by ARGONAUTE9 modulates the monosporic female gametogenesis in Arabidopsis thaliana.
Plant Reprod. 2024 Jun;37(2):243-258. doi: 10.1007/s00497-023-00487-2. Epub 2023 Nov 29.
8
Genomic methylation patterns in pre-meiotic gynoecia of wild-type and RdDM mutants of Arabidopsis.
Front Plant Sci. 2023 Mar 13;14:1123211. doi: 10.3389/fpls.2023.1123211. eCollection 2023.
10
Transcriptomic Analysis of Radish ( L.) Roots with Overexpression.
Plants (Basel). 2022 Aug 20;11(16):2163. doi: 10.3390/plants11162163.

本文引用的文献

2
Emergence of apospory and bypass of meiosis via apomixis after sexual hybridisation and polyploidisation.
New Phytol. 2014 Dec;204(4):1000-12. doi: 10.1111/nph.12954. Epub 2014 Jul 31.
3
Intraspecific Arabidopsis hybrids show different patterns of heterosis despite the close relatedness of the parental genomes.
Plant Physiol. 2014 Sep;166(1):265-80. doi: 10.1104/pp.114.243998. Epub 2014 Jul 29.
5
Mapping the epigenetic basis of complex traits.
Science. 2014 Mar 7;343(6175):1145-8. doi: 10.1126/science.1248127. Epub 2014 Feb 6.
7
Massive genomic variation and strong selection in Arabidopsis thaliana lines from Sweden.
Nat Genet. 2013 Aug;45(8):884-890. doi: 10.1038/ng.2678. Epub 2013 Jun 23.
8
On the origin and evolution of apomixis in Boechera.
Plant Reprod. 2013 Dec;26(4):309-15. doi: 10.1007/s00497-013-0218-7. Epub 2013 Jun 20.
9
Genomic and epigenetic insights into the molecular bases of heterosis.
Nat Rev Genet. 2013 Jul;14(7):471-82. doi: 10.1038/nrg3503. Epub 2013 Jun 11.
10
The evolution of quantitative traits in complex environments.
Heredity (Edinb). 2014 Jan;112(1):4-12. doi: 10.1038/hdy.2013.33. Epub 2013 Apr 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验