Tamura Yuki, Kitaoka Yu, Matsunaga Yutaka, Hoshino Daisuke, Hatta Hideo
Department of Sports Sciences, The University of Tokyo, Tokyo, Japan.
J Physiol. 2015 Jun 15;593(12):2707-20. doi: 10.1113/JP270093. Epub 2015 May 20.
Traumatic nerve injury or nerve disease leads to denervation and severe muscle atrophy. Recent evidence shows that mitochondrial loss could be a key mediator of skeletal muscle atrophy. Here, we show that daily heat stress treatment rescues denervation-induced loss of mitochondria and concomitant muscle atrophy. We also found that denervation-activated autophagy-dependent mitochondrial clearance (mitophagy) was suppressed by daily heat stress treatment. The molecular basis of this observation is explained by our results showing that heat stress treatment attenuates the increase of key proteins that regulate the tagging step for mitochondrial clearance and the intermediate step of autophagosome formation in denervated muscle. These findings contribute to the better understanding of mitochondrial quality control in denervated muscle from a translational perspective and provide a mechanism behind the attenuation of muscle wasting by heat stress.
Traumatic nerve injury or motor neuron disease leads to denervation and severe muscle atrophy. Recent evidence indicates that loss of mitochondria and the related reduction in oxidative capacity could be key mediators of skeletal muscle atrophy. As our previous study showed that heat stress increased the numbers of mitochondria in skeletal muscle, we evaluated whether heat stress treatment could have a beneficial impact on denervation-induced loss of mitochondria and subsequent muscle atrophy. Here, we report that daily heat stress treatment (mice placed in a chamber with a hot environment; 40°C, 30 min day(-1) , for 7 days) rescues the following parameters: (i) muscle atrophy (decreased gastrocnemius muscle mass); (ii) loss of mitochondrial content (decreased levels of ubiquinol-cytochrome c reductase core protein II, cytochrome c oxidase subunits I and IV and voltage-dependent anion channel protein); and (iii) reduction in oxidative capacity (reduced maximal activities of citrate synthase and 3-hydroxyacyl-CoA dehydrogenase) in denervated muscle (produced by unilateral sciatic nerve transection). In order to gain a better understanding of the above mitochondrial adaptations, we also examined the effects of heat stress on autophagy-dependent mitochondrial clearance (mitophagy). Daily heat stress normalized denervation-activated induction of mitophagy (increased mitochondrial microtubule-associated protein 1A/1B-light chain3-II (LC3-II) with and without blocker of autophagosome clearance). The molecular basis of this observation was explained by the results that heat stress attenuated the denervation-induced increase in key proteins that regulate the following steps: (i) the tagging step of mitochondrial clearance (increased mitochondrial Parkin, ubiquitin-conjugated, P62/sequestosome 1 (P62/SQSTM1)); and (ii) the elongation step of autophagosome formation (increased Atg5-Atg12 conjugate and Atg16L). Overall, our results contribute to the better understanding of mitochondrial quality control and the mechanisms behind the attenuation of muscle wasting by heat stress in denervated skeletal muscle.
创伤性神经损伤或神经疾病会导致去神经支配和严重的肌肉萎缩。最近的证据表明,线粒体丢失可能是骨骼肌萎缩的关键介质。在此,我们表明每日热应激处理可挽救去神经支配引起的线粒体丢失和随之而来的肌肉萎缩。我们还发现,每日热应激处理可抑制去神经支配激活的自噬依赖性线粒体清除(线粒体自噬)。我们的结果解释了这一观察结果的分子基础,即热应激处理减弱了去神经支配肌肉中调节线粒体清除标记步骤和自噬体形成中间步骤的关键蛋白的增加。这些发现有助于从转化医学角度更好地理解去神经支配肌肉中的线粒体质量控制,并提供了热应激减轻肌肉萎缩的机制。
创伤性神经损伤或运动神经元疾病会导致去神经支配和严重的肌肉萎缩。最近的证据表明,线粒体丢失和相关的氧化能力降低可能是骨骼肌萎缩的关键介质。正如我们之前的研究表明热应激可增加骨骼肌中线粒体的数量,我们评估了热应激处理是否对去神经支配引起的线粒体丢失和随后的肌肉萎缩有有益影响。在此,我们报告每日热应激处理(将小鼠置于热环境室中;40°C,每天30分钟,持续7天)可挽救以下参数:(i)肌肉萎缩(腓肠肌质量减少);(ii)线粒体含量丢失(泛醌 - 细胞色素c还原酶核心蛋白II、细胞色素c氧化酶亚基I和IV以及电压依赖性阴离子通道蛋白水平降低);以及(iii)去神经支配肌肉(由单侧坐骨神经横断产生)中氧化能力的降低(柠檬酸合酶和3 - 羟基酰基辅酶A脱氢酶的最大活性降低)。为了更好地理解上述线粒体适应性变化,我们还研究了热应激对自噬依赖性线粒体清除(线粒体自噬)的影响。每日热应激使去神经支配激活的线粒体自噬诱导正常化(无论有无自噬体清除阻滞剂,线粒体微管相关蛋白1A/1B轻链3 - II(LC3 - II)均增加)。这一观察结果的分子基础可由以下结果解释:热应激减弱了去神经支配诱导的关键蛋白增加,这些蛋白调节以下步骤:(i)线粒体清除的标记步骤(线粒体帕金蛋白、泛素共轭物、P62/聚集体小体1(P62/SQSTM1)增加);以及(ii)自噬体形成的延伸步骤(Atg5 - Atg12共轭物和Atg16L增加)。总体而言,我们的数据有助于更好地理解线粒体质量控制以及热应激减轻去神经支配骨骼肌中肌肉萎缩的机制。