Joe Yeonsoo, Zheng Min, Kim Hyo Jeong, Uddin Md Jamal, Kim Seul-Ki, Chen Yingqing, Park Jeongmin, Cho Gyeong Jae, Ryter Stefan W, Chung Hun Taeg
School of Biological Sciences, University of Ulsan, Ulsan, Korea;
School of Biological Sciences, University of Ulsan, Ulsan, Korea; Department of Neurology, Affiliated Hospital of YanBian University, YanJi, China;
Am J Physiol Gastrointest Liver Physiol. 2015 Jul 1;309(1):G21-9. doi: 10.1152/ajpgi.00307.2014. Epub 2015 May 7.
Hepatic ischemia-reperfusion (I/R) can cause hepatocellular injury associated with the inflammatory response and mitochondrial dysfunction. We studied the protective effects of the phosphodiesterase inhibitor cilostazol in hepatic I/R and the roles of mitochondria and the Nrf2/heme oxygenase-1 (HO-1) system. Wild-type, Hmox1(-/-), or Nrf2(-/-) mice were subjected to hepatic I/R in the absence or presence of cilostazol followed by measurements of liver injury. Primary hepatocytes were subjected to cilostazol with the HO-1 inhibitor ZnPP, or Nrf2-specific siRNA, followed by assessment of mitochondrial biogenesis. Preconditioning with cilostazol prior to hepatic I/R protected against hepatocellular injury and mitochondrial dysfunction. Cilostazol reduced the serum levels of alanine aminotransferase, TNF-α, and liver myeloperoxidase content relative to control I/R-treated mice. In primary hepatocytes, cilostazol increased the expression of HO-1, and markers of mitochondrial biogenesis, PGC-1α, NRF-1, and TFAM, induced the mitochondrial proteins COX III and COX IV and increased mtDNA and mitochondria content. Pretreatment of primary hepatocytes with ZnPP inhibited cilostazol-induced PGC-1α, NRF-1, and TFAM mRNA expression and reduced mtDNA and mitochondria content. Genetic silencing of Nrf2 prevented the induction of HO-1 and mitochondrial biogenesis by cilostazol in HepG2 cells. Cilostazol induced hepatic HO-1 production and mitochondrial biogenesis in wild-type mice, but not in Hmox1(-/-) or Nrf2(-/-) mice, and failed to protect against liver injury in Nrf2(-/-) mice. These results suggest that I/R injury can impair hepatic mitochondrial function, which can be reversed by cilostazol treatment. These results also suggest that cilostazol-induced mitochondrial biogenesis was mediated by an Nrf-2- and HO-1-dependent pathway.
肝缺血再灌注(I/R)可导致与炎症反应和线粒体功能障碍相关的肝细胞损伤。我们研究了磷酸二酯酶抑制剂西洛他唑在肝I/R中的保护作用以及线粒体和Nrf2/血红素加氧酶-1(HO-1)系统的作用。野生型、Hmox1(-/-)或Nrf2(-/-)小鼠在有无西洛他唑的情况下进行肝I/R,随后测量肝损伤情况。原代肝细胞用西洛他唑与HO-1抑制剂ZnPP或Nrf2特异性小干扰RNA处理,随后评估线粒体生物发生。在肝I/R之前用西洛他唑预处理可预防肝细胞损伤和线粒体功能障碍。与对照I/R处理的小鼠相比,西洛他唑降低了血清丙氨酸转氨酶、TNF-α水平以及肝脏髓过氧化物酶含量。在原代肝细胞中,西洛他唑增加了HO-1的表达以及线粒体生物发生标志物PGC-1α、NRF-1和TFAM的表达,诱导了线粒体蛋白COX III和COX IV的表达,并增加了线粒体DNA和线粒体含量。用ZnPP预处理原代肝细胞可抑制西洛他唑诱导的PGC-1α、NRF-1和TFAM mRNA表达,并降低线粒体DNA和线粒体含量。Nrf2的基因沉默阻止了西洛他唑在HepG2细胞中诱导HO-1和线粒体生物发生。西洛他唑在野生型小鼠中诱导肝脏HO-1产生和线粒体生物发生,但在Hmox1(-/-)或Nrf2(-/-)小鼠中则不然,并且未能保护Nrf2(-/-)小鼠免受肝损伤。这些结果表明,I/R损伤可损害肝脏线粒体功能,而西洛他唑治疗可使其逆转。这些结果还表明,西洛他唑诱导的线粒体生物发生是由Nrf-2和HO-1依赖性途径介导的。