Hiramatsu Nobuhiko, Chiang Wei-Chieh, Kurt Timothy D, Sigurdson Christina J, Lin Jonathan H
Department of Pathology, University of California-San Diego, La Jolla, California.
Department of Pathology, University of California-San Diego, La Jolla, California.
Am J Pathol. 2015 Jul;185(7):1800-8. doi: 10.1016/j.ajpath.2015.03.009. Epub 2015 May 5.
Eukaryotic cells fold and assemble membrane and secreted proteins in the endoplasmic reticulum (ER), before delivery to other cellular compartments or the extracellular environment. Correctly folded proteins are released from the ER, and poorly folded proteins are retained until they achieve stable conformations; irreparably misfolded proteins are targeted for degradation. Diverse pathological insults, such as amino acid mutations, hypoxia, or infection, can overwhelm ER protein quality control, leading to misfolded protein buildup, causing ER stress. To cope with ER stress, eukaryotic cells activate the unfolded protein response (UPR) by increasing levels of ER protein-folding enzymes and chaperones, enhancing the degradation of misfolded proteins, and reducing protein translation. In mammalian cells, three ER transmembrane proteins, inositol-requiring enzyme-1 (IRE1; official name ERN1), PKR-like ER kinase (PERK; official name EIF2AK3), and activating transcription factor-6, control the UPR. The UPR signaling triggers a set of prodeath programs when the cells fail to successfully adapt to ER stress or restore homeostasis. ER stress and UPR signaling are implicated in the pathogenesis of diverse diseases, including neurodegeneration, cancer, diabetes, and inflammation. This review discusses the current understanding in both adaptive and apoptotic responses as well as the molecular mechanisms instigating apoptosis via IRE1 and PERK signaling. We also examine how IRE1 and PERK signaling may be differentially used during neurodegeneration arising in retinitis pigmentosa and prion infection.
真核细胞在内质网(ER)中折叠并组装膜蛋白和分泌蛋白,然后再将其运输到其他细胞区室或细胞外环境。正确折叠的蛋白质从内质网释放,折叠不良的蛋白质则被保留,直到它们形成稳定的构象;无法修复的错误折叠蛋白质会被靶向降解。多种病理损伤,如氨基酸突变、缺氧或感染,会使内质网蛋白质质量控制不堪重负,导致错误折叠的蛋白质积累,从而引发内质网应激。为了应对内质网应激,真核细胞通过增加内质网蛋白质折叠酶和伴侣蛋白的水平、增强错误折叠蛋白质的降解以及减少蛋白质翻译来激活未折叠蛋白反应(UPR)。在哺乳动物细胞中,三种内质网跨膜蛋白,即肌醇需要酶1(IRE1;官方名称ERN1)、PKR样内质网激酶(PERK;官方名称EIF2AK3)和激活转录因子6,控制着未折叠蛋白反应。当细胞未能成功适应内质网应激或恢复内环境稳定时,未折叠蛋白反应信号会触发一系列促死亡程序。内质网应激和未折叠蛋白反应信号与多种疾病的发病机制有关,包括神经退行性变、癌症、糖尿病和炎症。本综述讨论了目前对适应性和凋亡反应的理解,以及通过IRE1和PERK信号引发凋亡的分子机制。我们还研究了在视网膜色素变性和朊病毒感染引起的神经退行性变过程中,IRE1和PERK信号可能如何被不同地利用。