Suppr超能文献

使用极值区域树检测显微镜图像中的重叠实例。

Detecting overlapping instances in microscopy images using extremal region trees.

机构信息

Department of Engineering Science, University of Oxford, Oxford OX1 2JD, UK.

Skolkovo Institute of Science and Technology (Skoltech), Skolkovo 143025 Russia.

出版信息

Med Image Anal. 2016 Jan;27:3-16. doi: 10.1016/j.media.2015.03.002. Epub 2015 Apr 14.

Abstract

In many microscopy applications the images may contain both regions of low and high cell densities corresponding to different tissues or colonies at different stages of growth. This poses a challenge to most previously developed automated cell detection and counting methods, which are designed to handle either the low-density scenario (through cell detection) or the high-density scenario (through density estimation or texture analysis). The objective of this work is to detect all the instances of an object of interest in microscopy images. The instances may be partially overlapping and clustered. To this end we introduce a tree-structured discrete graphical model that is used to select and label a set of non-overlapping regions in the image by a global optimization of a classification score. Each region is labeled with the number of instances it contains - for example regions can be selected that contain two or three object instances, by defining separate classes for tuples of objects in the detection process. We show that this formulation can be learned within the structured output SVM framework and that the inference in such a model can be accomplished using dynamic programming on a tree structured region graph. Furthermore, the learning only requires weak annotations - a dot on each instance. The candidate regions for the selection are obtained as extremal region of a surface computed from the microscopy image, and we show that the performance of the model can be improved by considering a proxy problem for learning the surface that allows better selection of the extremal regions. Furthermore, we consider a number of variations for the loss function used in the structured output learning. The model is applied and evaluated over six quite disparate data sets of images covering: fluorescence microscopy, weak-fluorescence molecular images, phase contrast microscopy and histopathology images, and is shown to exceed the state of the art in performance.

摘要

在许多显微镜应用中,图像可能包含低细胞密度和高细胞密度区域,分别对应于不同组织或处于不同生长阶段的菌落。这给大多数以前开发的自动细胞检测和计数方法带来了挑战,这些方法旨在处理低密度情况(通过细胞检测)或高密度情况(通过密度估计或纹理分析)。本工作的目的是检测显微镜图像中感兴趣的对象的所有实例。这些实例可能部分重叠和聚类。为此,我们引入了一种树状离散图形模型,该模型通过对分类得分进行全局优化,用于选择和标记图像中的一组不重叠区域。每个区域都用它包含的实例数量进行标记-例如,可以通过在检测过程中为对象的元组定义单独的类,选择包含两个或三个对象实例的区域。我们表明,这种形式可以在结构输出 SVM 框架内学习,并且可以在树状区域图上使用动态规划来完成此类模型的推断。此外,学习仅需要弱注释-每个实例上的一个点。选择的候选区域是从显微镜图像计算的表面的极值区域获得的,我们表明,通过考虑用于学习表面的代理问题,可以提高模型的性能,从而可以更好地选择极值区域。此外,我们考虑了结构输出学习中使用的损失函数的许多变体。该模型应用于六个非常不同的图像数据集,并对其进行了评估,涵盖了:荧光显微镜、弱荧光分子图像、相差显微镜和组织病理学图像,并显示出在性能上超过了现有技术。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验