Suppr超能文献

TEM-1 β-内酰胺酶中的负上位性与进化能力——酶的构象自由度与无序之间的微妙界限

Negative Epistasis and Evolvability in TEM-1 β-Lactamase--The Thin Line between an Enzyme's Conformational Freedom and Disorder.

作者信息

Dellus-Gur Eynat, Elias Mikael, Caselli Emilia, Prati Fabio, Salverda Merijn L M, de Visser J Arjan G M, Fraser James S, Tawfik Dan S

机构信息

Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel.

Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel.

出版信息

J Mol Biol. 2015 Jul 17;427(14):2396-409. doi: 10.1016/j.jmb.2015.05.011. Epub 2015 May 22.

Abstract

Epistasis is a key factor in evolution since it determines which combinations of mutations provide adaptive solutions and which mutational pathways toward these solutions are accessible by natural selection. There is growing evidence for the pervasiveness of sign epistasis--a complete reversion of mutational effects, particularly in protein evolution--yet its molecular basis remains poorly understood. We describe the structural basis of sign epistasis between G238S and R164S, two adaptive mutations in TEM-1 β-lactamase--an enzyme that endows antibiotics resistance. Separated by 10 Å, these mutations initiate two separate trajectories toward increased hydrolysis rates and resistance toward second and third-generation cephalosporins antibiotics. Both mutations allow the enzyme's active site to adopt alternative conformations and accommodate the new antibiotics. By solving the corresponding set of crystal structures, we found that R164S causes local disorder whereas G238S induces discrete conformations. When combined, the mutations in 238 and 164 induce local disorder whereby nonproductive conformations that perturb the enzyme's catalytic preorganization dominate. Specifically, Asn170 that coordinates the deacylating water molecule is misaligned, in both the free form and the inhibitor-bound double mutant. This local disorder is not restored by stabilizing global suppressor mutations and thus leads to an evolutionary cul-de-sac. Conformational dynamism therefore underlines the reshaping potential of protein's structures and functions but also limits protein evolvability because of the fragility of the interactions networks that maintain protein structures.

摘要

上位性是进化中的一个关键因素,因为它决定了哪些突变组合能提供适应性解决方案,以及自然选择能够通过哪些突变途径来实现这些解决方案。越来越多的证据表明,符号上位性普遍存在——突变效应的完全逆转,尤其是在蛋白质进化中——但其分子基础仍知之甚少。我们描述了TEM-1 β-内酰胺酶(一种赋予抗生素抗性的酶)中两个适应性突变G238S和R164S之间符号上位性的结构基础。这两个突变相隔10 Å,它们启动了两条独立的轨迹,朝着提高水解速率以及对第二代和第三代头孢菌素抗生素的抗性发展。这两个突变都使酶的活性位点能够采用不同的构象,并适应新的抗生素。通过解析相应的晶体结构集,我们发现R164S导致局部无序,而G238S诱导离散构象。当两者结合时,238位和164位的突变会诱导局部无序,从而使扰乱酶催化预组织的非生产性构象占主导。具体而言,在游离形式和抑制剂结合的双突变体中,协调脱酰基水分子的Asn170都发生了错位。这种局部无序不会通过稳定全局抑制突变来恢复,因此导致了进化的死胡同。因此,构象动态性既强调了蛋白质结构和功能的重塑潜力,也由于维持蛋白质结构的相互作用网络的脆弱性而限制了蛋白质的进化能力。

相似文献

1
Negative Epistasis and Evolvability in TEM-1 β-Lactamase--The Thin Line between an Enzyme's Conformational Freedom and Disorder.
J Mol Biol. 2015 Jul 17;427(14):2396-409. doi: 10.1016/j.jmb.2015.05.011. Epub 2015 May 22.
3
Genetic and structural characterization of an L201P global suppressor substitution in TEM-1 beta-lactamase.
J Mol Biol. 2008 Dec 5;384(1):151-64. doi: 10.1016/j.jmb.2008.09.009. Epub 2008 Sep 16.
4
Initial mutations direct alternative pathways of protein evolution.
PLoS Genet. 2011 Mar;7(3):e1001321. doi: 10.1371/journal.pgen.1001321. Epub 2011 Mar 3.
5
What makes a protein fold amenable to functional innovation? Fold polarity and stability trade-offs.
J Mol Biol. 2013 Jul 24;425(14):2609-21. doi: 10.1016/j.jmb.2013.03.033. Epub 2013 Mar 28.
6
Mimicking natural evolution in metallo-beta-lactamases through second-shell ligand mutations.
Proc Natl Acad Sci U S A. 2005 Sep 27;102(39):13761-6. doi: 10.1073/pnas.0503495102. Epub 2005 Sep 19.
7
Pervasive Pairwise Intragenic Epistasis among Sequential Mutations in TEM-1 β-Lactamase.
J Mol Biol. 2019 May 3;431(10):1981-1992. doi: 10.1016/j.jmb.2019.03.020. Epub 2019 Mar 25.
8
Increased folding stability of TEM-1 beta-lactamase by in vitro selection.
J Mol Biol. 2008 Oct 31;383(1):238-51. doi: 10.1016/j.jmb.2008.07.082. Epub 2008 Aug 3.
9
SHV-129: A Gateway to Global Suppressors in the SHV β-Lactamase Family?
Mol Biol Evol. 2016 Feb;33(2):429-41. doi: 10.1093/molbev/msv235. Epub 2015 Nov 3.
10
Experimental and Analysis of TEM β-Lactamase Adaptive Evolution.
ACS Infect Dis. 2022 Dec 9;8(12):2451-2463. doi: 10.1021/acsinfecdis.2c00216. Epub 2022 Nov 14.

引用本文的文献

1
Effect of Mutations on the Evolution of Extended Spectrum β-lactamases (ESBL).
Protein J. 2025 Aug 19. doi: 10.1007/s10930-025-10284-7.
3
Structural comparison of substrate-binding pockets of serine β-lactamases in classes A, C, and D.
J Enzyme Inhib Med Chem. 2025 Dec;40(1):2435365. doi: 10.1080/14756366.2024.2435365. Epub 2024 Dec 23.
4
Rational design of a highly active -glycosyltransferase mutant using fragment replacement approach.
Eng Microbiol. 2023 Nov 30;4(1):100134. doi: 10.1016/j.engmic.2023.100134. eCollection 2024 Mar.
5
Molecular insights into the evolutionary trajectory of a clinical isolate with a complex trade-off between resistance and virulence.
Antimicrob Agents Chemother. 2024 Nov 6;68(11):e0103624. doi: 10.1128/aac.01036-24. Epub 2024 Sep 24.
8
Epistasis arises from shifting the rate-limiting step during enzyme evolution of a β-lactamase.
Nat Catal. 2024;7(5):499-509. doi: 10.1038/s41929-024-01117-4. Epub 2024 Feb 23.
9
Selection of a promiscuous minimalist cAMP phosphodiesterase from a library of de novo designed proteins.
Nat Chem. 2024 Jul;16(7):1200-1208. doi: 10.1038/s41557-024-01490-4. Epub 2024 May 3.

本文引用的文献

1
Enzyme dynamics and engineering: one step at a time.
Chem Biol. 2014 Oct 23;21(10):1259-1260. doi: 10.1016/j.chembiol.2014.10.003.
2
Maintenance of native-like protein dynamics may not be required for engineering functional proteins.
Chem Biol. 2014 Oct 23;21(10):1330-1340. doi: 10.1016/j.chembiol.2014.07.016. Epub 2014 Sep 4.
3
Empirical fitness landscapes and the predictability of evolution.
Nat Rev Genet. 2014 Jul;15(7):480-90. doi: 10.1038/nrg3744. Epub 2014 Jun 10.
4
The robustness and evolvability of transcription factor binding sites.
Science. 2014 Feb 21;343(6173):875-7. doi: 10.1126/science.1249046.
5
Conformational dynamics control ubiquitin-deubiquitinase interactions and influence in vivo signaling.
Proc Natl Acad Sci U S A. 2013 Jul 9;110(28):11379-84. doi: 10.1073/pnas.1302407110. Epub 2013 Jun 25.
6
Epistasis among adaptive mutations in deer mouse hemoglobin.
Science. 2013 Jun 14;340(6138):1324-7. doi: 10.1126/science.1236862.
7
Patterns of Epistasis between beneficial mutations in an antibiotic resistance gene.
Mol Biol Evol. 2013 Aug;30(8):1779-87. doi: 10.1093/molbev/mst096. Epub 2013 May 15.
8
What makes a protein fold amenable to functional innovation? Fold polarity and stability trade-offs.
J Mol Biol. 2013 Jul 24;425(14):2609-21. doi: 10.1016/j.jmb.2013.03.033. Epub 2013 Mar 28.
9
Protein insertions and deletions enabled by neutral roaming in sequence space.
Mol Biol Evol. 2013 Apr;30(4):761-71. doi: 10.1093/molbev/mst003. Epub 2013 Jan 11.
10
Epistasis as the primary factor in molecular evolution.
Nature. 2012 Oct 25;490(7421):535-8. doi: 10.1038/nature11510. Epub 2012 Oct 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验