a Department of Chemical Engineering , University of Virginia , Charlottesville , VA , USA and.
b School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST) , Gwangju , Republic of Korea.
Crit Rev Biotechnol. 2016 Oct;36(5):803-15. doi: 10.3109/07388551.2015.1048504. Epub 2015 Jun 3.
The last decade has witnessed striking progress in the development of bioorthogonal reactions that are strictly directed towards intended sites in biomolecules while avoiding interference by a number of physical and chemical factors in biological environment. Efforts to exploit bioorthogonal reactions in protein conjugation have led to the evolution of protein translational machineries and the expansion of genetic codes that systematically incorporate a range of non-natural amino acids containing bioorthogonal groups into recombinant proteins in a site-specific manner. Chemoselective conjugation of proteins has begun to find valuable applications to previously inaccessible problems. In this review, we describe bioorthogonal reactions useful for protein conjugation, and biosynthetic methods that produce proteins amenable to those reactions through an expanded genetic code. We then provide key examples in which novel protein conjugates, generated by the genetic incorporation of a non-natural amino acid and the chemoselective reactions, address unmet needs in protein therapeutics and enzyme engineering.
过去十年见证了生物正交反应的显著进展,这些反应严格针对生物分子中的预期位点,同时避免了生物环境中许多物理和化学因素的干扰。在蛋白质偶联中利用生物正交反应的努力导致了蛋白质翻译机制的发展和遗传密码的扩展,这些机制系统地将一系列含有生物正交基团的非天然氨基酸以特定方式掺入重组蛋白中。蛋白质的化学选择性偶联已经开始在以前无法解决的问题上找到有价值的应用。在这篇综述中,我们描述了用于蛋白质偶联的生物正交反应,以及通过扩展的遗传密码生产可用于这些反应的蛋白质的生物合成方法。然后,我们提供了一些关键的例子,其中通过非天然氨基酸的遗传掺入和化学选择性反应生成的新型蛋白质偶联物解决了蛋白质治疗学和酶工程中的未满足需求。