Suppr超能文献

赖氨酸和 N-末端生物缀合在肽和蛋白质中的发展和最新进展。

Development and Recent Advances in Lysine and N-Terminal Bioconjugation for Peptides and Proteins.

机构信息

State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hum, Hong Kong, China.

出版信息

Molecules. 2023 Jan 21;28(3):1083. doi: 10.3390/molecules28031083.

Abstract

The demand for creation of protein diversity and regulation of protein function through native protein modification and post-translational modification has ignited the development of selective chemical modification methods for peptides and proteins. Chemical bioconjugation offers selective functionalization providing bioconjugates with desired properties and functions for diverse applications in chemical biology, medicine, and biomaterials. The amino group existing at the lysine residue and N-terminus of peptides and proteins has been extensively studied in bioconjugation because of its good nucleophilicity and high surface exposure. Herein, we review the development of chemical methods for modification of the amino groups on lysine residue and N-terminus featuring excellent selectivity, mild reaction conditions, short reaction time, high conversion, biocompatibility, and preservation of protein integrity. This review is organized based on the chemoselectivity and site-selectivity of the chemical bioconjugation reagents to the amino acid residues aiming to provide guidance for the selection of appropriate bioconjugation methods.

摘要

通过天然蛋白质修饰和翻译后修饰来创造蛋白质多样性和调节蛋白质功能的需求,激发了对肽和蛋白质的选择性化学修饰方法的发展。化学生物共轭提供了选择性的功能化,为化学生物学、医学和生物材料等多种应用提供了具有所需性质和功能的生物缀合物。由于赖氨酸残基和肽及蛋白质的 N 末端的氨基具有良好的亲核性和高的表面暴露度,因此在生物缀合中已经对其进行了广泛的研究。本文综述了具有良好选择性、温和的反应条件、短的反应时间、高转化率、生物相容性和蛋白质完整性的赖氨酸残基和 N 末端氨基修饰的化学方法的发展。本综述根据化学连接试剂对氨基酸残基的化学选择性和位点选择性进行组织,旨在为选择合适的生物共轭方法提供指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2a3/9953373/3edb945ed89b/molecules-28-01083-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验