Blanco Ayala Tonali, Lugo Huitrón Rafael, Carmona Aparicio Liliana, Ramírez Ortega Daniela, González Esquivel Dinora, Pedraza Chaverrí José, Pérez de la Cruz Gonzalo, Ríos Camilo, Schwarcz Robert, Pérez de la Cruz Verónica
Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, S.S.A. México D.F., Mexico.
Laboratorio de Neuroquímica, Instituto Nacional de Pediatría, S.S.A. México D.F., Mexico.
Front Cell Neurosci. 2015 May 18;9:178. doi: 10.3389/fncel.2015.00178. eCollection 2015.
Kynurenic acid (KYNA), an astrocyte-derived, endogenous antagonist of α7 nicotinic acetylcholine and excitatory amino acid receptors, regulates glutamatergic, GABAergic, cholinergic and dopaminergic neurotransmission in several regions of the rodent brain. Synthesis of KYNA in the brain and elsewhere is generally attributed to the enzymatic conversion of L-kynurenine (L-KYN) by kynurenine aminotransferases (KATs). However, alternative routes, including KYNA formation from D-kynurenine (D-KYN) by D-amino acid oxidase (DAAO) and the direct transformation of kynurenine to KYNA by reactive oxygen species (ROS), have been demonstrated in the rat brain. Using the rat cerebellum, a region of low KAT activity and high DAAO activity, the present experiments were designed to examine KYNA production from L-KYN or D-KYN by KAT and DAAO, respectively, and to investigate the effect of ROS on KYNA synthesis. In chemical combinatorial systems, both L-KYN and D-KYN interacted directly with peroxynitrite (ONOO(-)) and hydroxyl radicals (OH•), resulting in the formation of KYNA. In tissue homogenates, the non-specific KAT inhibitor aminooxyacetic acid (AOAA; 1 mM) reduced KYNA production from L-KYN and D-KYN by 85.1 ± 1.7% and 27.1 ± 4.5%, respectively. Addition of DAAO inhibitors (benzoic acid, kojic acid or 3-methylpyrazole-5-carboxylic acid; 5 μM each) attenuated KYNA formation from L-KYN and D-KYN by ~35% and ~66%, respectively. ONOO(-) (25 μM) potentiated KYNA production from both L-KYN and D-KYN, and these effects were reduced by DAAO inhibition. AOAA attenuated KYNA production from L-KYN + ONOO(-) but not from D-KYN + ONOO(-). In vivo, extracellular KYNA levels increased rapidly after perfusion of ONOO(-) and, more prominently, after subsequent perfusion with L-KYN or D-KYN (100 μM). Taken together, these results suggest that different mechanisms are involved in KYNA production in the rat cerebellum, and that, specifically, DAAO and ROS can function as alternative routes for KYNA production.
犬尿喹啉酸(KYNA)是一种由星形胶质细胞产生的α7烟碱型乙酰胆碱和兴奋性氨基酸受体的内源性拮抗剂,可调节啮齿动物大脑多个区域的谷氨酸能、γ-氨基丁酸能、胆碱能和多巴胺能神经传递。大脑及其他部位的KYNA合成通常归因于犬尿氨酸转氨酶(KATs)对L-犬尿氨酸(L-KYN)的酶促转化。然而,在大鼠脑中已证实存在其他途径,包括D-氨基酸氧化酶(DAAO)将D-犬尿氨酸(D-KYN)转化为KYNA以及活性氧(ROS)将犬尿氨酸直接转化为KYNA。利用大鼠小脑这一KAT活性低而DAAO活性高的区域,本实验旨在分别检测KAT和DAAO由L-KYN或D-KYN生成KYNA的情况,并研究ROS对KYNA合成的影响。在化学组合系统中,L-KYN和D-KYN均直接与过氧亚硝酸盐(ONOO(-))和羟基自由基(OH•)相互作用,从而生成KYNA。在组织匀浆中,非特异性KAT抑制剂氨基氧乙酸(AOAA;1 mM)使L-KYN和D-KYN生成KYNA的量分别减少了85.1±1.7%和27.1±4.5%。添加DAAO抑制剂(苯甲酸、曲酸或3-甲基吡唑-5-羧酸;各5 μM)分别使L-KYN和D-KYN生成KYNA的量减少了约35%和约66%。ONOO(-)(25 μM)增强了L-KYN和D-KYN生成KYNA的能力,而DAAO抑制可减弱这些作用。AOAA减弱了L-KYN + ONOO(-)生成KYNA的能力,但未减弱D-KYN + ONOO(-)生成KYNA的能力。在体内,灌注ONOO(-)后细胞外KYNA水平迅速升高,随后灌注L-KYN或D-KYN(100 μM)后升高更为显著。综上所述,这些结果表明大鼠小脑生成KYNA涉及不同机制,具体而言,DAAO和ROS可作为KYNA生成的替代途径。