Anantharaman Karthik, Breier John A, Dick Gregory J
Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA.
Department of Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
ISME J. 2016 Jan;10(1):225-39. doi: 10.1038/ismej.2015.81. Epub 2015 Jun 5.
Microbial processes within deep-sea hydrothermal plumes affect ocean biogeochemistry on global scales. In rising hydrothermal plumes, a combination of microbial metabolism and particle formation processes initiate the transformation of reduced chemicals like hydrogen sulfide, hydrogen, methane, iron, manganese and ammonia that are abundant in hydrothermal vent fluids. Despite the biogeochemical importance of this rising portion of plumes, it is understudied in comparison to neutrally buoyant plumes. Here we use metagenomics and bioenergetic modeling to describe the abundance and genetic potential of microorganisms in relation to available electron donors in five different hydrothermal plumes and three associated background deep-sea waters from the Eastern Lau Spreading Center located in the Western Pacific Ocean. Three hundred and thirty one distinct genomic 'bins' were identified, comprising an estimated 951 genomes of archaea, bacteria, eukarya and viruses. A significant proportion of these genomes is from novel microorganisms and thus reveals insights into the energy metabolism of heretofore unknown microbial groups. Community-wide analyses of genes encoding enzymes that oxidize inorganic energy sources showed that sulfur oxidation was the most abundant and diverse chemolithotrophic microbial metabolism in the community. Genes for sulfur oxidation were commonly present in genomic bins that also contained genes for oxidation of hydrogen and methane, suggesting metabolic versatility in these microbial groups. The relative diversity and abundance of genes encoding hydrogen oxidation was moderate, whereas that of genes for methane and ammonia oxidation was low in comparison to sulfur oxidation. Bioenergetic-thermodynamic modeling supports the metagenomic analyses, showing that oxidation of elemental sulfur with oxygen is the most dominant catabolic reaction in the hydrothermal plumes. We conclude that the energy metabolism of microbial communities inhabiting rising hydrothermal plumes is dictated by the underlying plume chemistry, with a dominant role for sulfur-based chemolithoautotrophy.
深海热液羽流中的微生物过程在全球尺度上影响着海洋生物地球化学。在上升的热液羽流中,微生物代谢和颗粒形成过程共同作用,引发了热液喷口流体中大量存在的还原性化学物质(如硫化氢、氢气、甲烷、铁、锰和氨)的转化。尽管羽流上升部分在生物地球化学方面具有重要意义,但与中性浮力羽流相比,对其研究较少。在这里,我们使用宏基因组学和生物能量学模型,来描述西太平洋东劳海脊扩张中心五个不同热液羽流和三个相关背景深海水中微生物的丰度及其与可用电子供体相关的遗传潜力。我们识别出331个不同的基因组“箱”,其中估计包含古菌、细菌、真核生物和病毒的951个基因组。这些基因组中有很大一部分来自新的微生物,从而揭示了此前未知微生物群体的能量代谢情况。对编码氧化无机能源的酶的基因进行的全群落分析表明,硫氧化是群落中最丰富和多样的化能无机营养型微生物代谢。硫氧化基因通常存在于基因组箱中,这些基因组箱中还包含氢气和甲烷氧化的基因,这表明这些微生物群体具有代谢多样性。与硫氧化相比,编码氢氧化的基因的相对多样性和丰度适中,而编码甲烷和氨氧化的基因的相对多样性和丰度较低。生物能量 - 热力学模型支持宏基因组分析,表明元素硫与氧气的氧化是热液羽流中最主要的分解代谢反应。我们得出结论,栖息在上升热液羽流中的微生物群落的能量代谢由羽流的基础化学性质决定,硫基化能自养起着主导作用。