Suppr超能文献

轮状病毒NSP3是聚腺苷酸结合蛋白-聚腺苷酸复合物的翻译替代物。

Rotavirus NSP3 Is a Translational Surrogate of the Poly(A) Binding Protein-Poly(A) Complex.

作者信息

Gratia Matthieu, Sarot Emeline, Vende Patrice, Charpilienne Annie, Baron Carolina Hilma, Duarte Mariela, Pyronnet Stephane, Poncet Didier

机构信息

Institut de Biologie Integrative de la Cellule (I2BC), UMR 9198, Département de Virologie, USC INRA 1358, Gif sur Yvette, France.

INSERM UMR-1037-Université de Toulouse III-Paul Sabatier, Equipe Labellisée Ligue Contre le Cancer, Laboratoire d'Excellence Toulouse Cancer (TOUCAN), Toulouse Cedex 1, France.

出版信息

J Virol. 2015 Sep;89(17):8773-82. doi: 10.1128/JVI.01402-15. Epub 2015 Jun 10.

Abstract

UNLABELLED

Through its interaction with the 5' translation initiation factor eIF4G, poly(A) binding protein (PABP) facilitates the translation of 5'-capped and 3'-poly(A)-tailed mRNAs. Rotavirus mRNAs are capped but not polyadenylated, instead terminating in a 3' GACC motif that is recognized by the viral protein NSP3, which competes with PABP for eIF4G binding. Upon rotavirus infection, viral, GACC-tailed mRNAs are efficiently translated, while host poly(A)-tailed mRNA translation is, in contrast, severely impaired. To explore the roles of NSP3 in these two opposing events, the translational capabilities of three capped mRNAs, distinguished by either a GACC, a poly(A), or a non-GACC and nonpoly(A) 3' end, have been monitored after electroporation of cells expressing all rotavirus proteins (infected cells) or only NSP3 (stably or transiently transfected cells). In infected cells, we found that the magnitudes of translation induction (GACC-tailed mRNA) and translation reduction [poly(A)-tailed mRNA] both depended on the rotavirus strain used but that translation reduction not genetically linked to NSP3. In transfected cells, even a small amount of NSP3 was sufficient to dramatically enhance GACC-tailed mRNA translation and, surprisingly, to slightly favor the translation of both poly(A)- and nonpoly(A)-tailed mRNAs, likely by stabilizing the eIF4E-eIF4G interaction. These data suggest that NSP3 is a translational surrogate of the PABP-poly(A) complex; therefore, it cannot by itself be responsible for inhibiting the translation of host poly(A)-tailed mRNAs upon rotavirus infection.

IMPORTANCE

To control host cell physiology and to circumvent innate immunity, many viruses have evolved powerful mechanisms aimed at inhibiting host mRNA translation while stimulating translation of their own mRNAs. How rotavirus tackles this challenge is still a matter of debate. Using rotavirus-infected cells, we show that the magnitude of cellular poly(A) mRNA translation differs with respect to rotavirus strains but is not genetically linked to NSP3. Using cells expressing rotavirus NSP3, we show that NSP3 alone not only dramatically enhances rotavirus-like mRNA translation but also enhances poly(A) mRNA translation rather than inhibiting it, likely by stabilizing the eIF4E-eIF4G complex. Thus, the inhibition of cellular polyadenylated mRNA translation during rotavirus infection cannot be attributed solely to NSP3 and is more likely the result of global competition between viral and host mRNAs for the cellular translation machinery.

摘要

未标记

通过与5'翻译起始因子eIF4G相互作用,聚腺苷酸结合蛋白(PABP)促进5'端有帽结构且3'端有多聚腺苷酸尾巴的mRNA的翻译。轮状病毒mRNA有帽结构但没有多聚腺苷酸化,而是以3' GACC基序结尾,该基序可被病毒蛋白NSP3识别,NSP3与PABP竞争eIF4G结合位点。轮状病毒感染后,带有GACC尾巴的病毒mRNA能高效翻译,而宿主细胞有多聚腺苷酸尾巴的mRNA翻译则严重受损。为探究NSP3在这两个相反过程中的作用,在电穿孔导入表达所有轮状病毒蛋白的细胞(感染细胞)或仅表达NSP3的细胞(稳定或瞬时转染细胞)后,监测了三种有帽mRNA的翻译能力,这三种mRNA的区别在于3'端分别为GACC、多聚腺苷酸或非GACC且非多聚腺苷酸。在感染细胞中,我们发现翻译诱导程度(带有GACC尾巴的mRNA)和翻译减少程度(有多聚腺苷酸尾巴的mRNA)均取决于所用的轮状病毒毒株,但翻译减少与NSP3无遗传关联。在转染细胞中,即使少量的NSP3也足以显著增强带有GACC尾巴的mRNA的翻译,而且令人惊讶的是,还略微有利于有多聚腺苷酸尾巴和非多聚腺苷酸尾巴的mRNA的翻译,这可能是通过稳定eIF4E - eIF4G相互作用实现的。这些数据表明NSP3是PABP - 多聚腺苷酸复合物的翻译替代物;因此,它本身不能负责在轮状病毒感染时抑制宿主细胞有多聚腺苷酸尾巴的mRNA的翻译。

重要性

为控制宿主细胞生理功能并规避先天免疫,许多病毒进化出了强大的机制,旨在抑制宿主mRNA翻译,同时刺激自身mRNA的翻译。轮状病毒如何应对这一挑战仍存在争议。利用轮状病毒感染的细胞,我们表明细胞有多聚腺苷酸mRNA的翻译程度因轮状病毒毒株而异,但与NSP3无遗传关联。利用表达轮状病毒NSP3的细胞,我们表明单独的NSP3不仅能显著增强类似轮状病毒的mRNA的翻译,还能增强有多聚腺苷酸mRNA的翻译,而不是抑制它,这可能是通过稳定eIF4E - eIF4G复合物实现的。因此,轮状病毒感染期间细胞多聚腺苷酸化mRNA翻译的抑制不能仅归因于NSP3,更可能是病毒和宿主mRNA对细胞翻译机制全局竞争的结果。

相似文献

1
Rotavirus NSP3 Is a Translational Surrogate of the Poly(A) Binding Protein-Poly(A) Complex.
J Virol. 2015 Sep;89(17):8773-82. doi: 10.1128/JVI.01402-15. Epub 2015 Jun 10.
2
Rotavirus Nonstructural Protein NSP3 is not required for viral protein synthesis.
J Virol. 2006 Sep;80(18):9031-8. doi: 10.1128/JVI.00437-06.
3
Species A rotavirus NSP3 acquires its translation inhibitory function prior to stable dimer formation.
PLoS One. 2017 Jul 24;12(7):e0181871. doi: 10.1371/journal.pone.0181871. eCollection 2017.
7
Challenging the Roles of NSP3 and Untranslated Regions in Rotavirus mRNA Translation.
PLoS One. 2016 Jan 4;11(1):e0145998. doi: 10.1371/journal.pone.0145998. eCollection 2016.
9
The rotaviral NSP3 protein stimulates translation of polyadenylated target mRNAs independently of its RNA-binding domain.
Biochem Biophys Res Commun. 2009 Dec 11;390(2):302-6. doi: 10.1016/j.bbrc.2009.09.115. Epub 2009 Oct 1.

引用本文的文献

3
Recovery of Recombinant Rotaviruses by Reverse Genetics.
Methods Mol Biol. 2024;2733:249-263. doi: 10.1007/978-1-0716-3533-9_15.
4
Recombinant rotavirus expressing the glycosylated S1 protein of SARS-CoV-2.
J Gen Virol. 2023 Oct;104(10). doi: 10.1099/jgv.0.001899.
6
Generation of Recombinant Rotaviruses Expressing Human Norovirus Capsid Proteins.
J Virol. 2022 Nov 23;96(22):e0126222. doi: 10.1128/jvi.01262-22. Epub 2022 Oct 31.
7
The Impact of Epitranscriptomics on Antiviral Innate Immunity.
Viruses. 2022 Jul 28;14(8):1666. doi: 10.3390/v14081666.
8
When Poly(A) Binding Proteins Meet Viral Infections, Including SARS-CoV-2.
J Virol. 2022 Apr 13;96(7):e0013622. doi: 10.1128/jvi.00136-22. Epub 2022 Mar 16.

本文引用的文献

1
The scanning mechanism of eukaryotic translation initiation.
Annu Rev Biochem. 2014;83:779-812. doi: 10.1146/annurev-biochem-060713-035802. Epub 2014 Jan 29.
2
Control of Paip1-eukayrotic translation initiation factor 3 interaction by amino acids through S6 kinase.
Mol Cell Biol. 2014 Mar;34(6):1046-53. doi: 10.1128/MCB.01079-13. Epub 2014 Jan 6.
3
Reciprocal inhibition between intracellular antiviral signaling and the RNAi machinery in mammalian cells.
Cell Host Microbe. 2013 Oct 16;14(4):435-45. doi: 10.1016/j.chom.2013.09.002. Epub 2013 Sep 26.
6
Global quantification of mammalian gene expression control.
Nature. 2011 May 19;473(7347):337-42. doi: 10.1038/nature10098.
7
The mechanism of eukaryotic translation initiation and principles of its regulation.
Nat Rev Mol Cell Biol. 2010 Feb;11(2):113-27. doi: 10.1038/nrm2838.
8
Synthetic dinucleotide mRNA cap analogs with tetraphosphate 5',5' bridge containing methylenebis(phosphonate) modification.
Org Biomol Chem. 2009 Nov 21;7(22):4763-76. doi: 10.1039/b911347a. Epub 2009 Sep 7.
9
Regulation of translation initiation in eukaryotes: mechanisms and biological targets.
Cell. 2009 Feb 20;136(4):731-45. doi: 10.1016/j.cell.2009.01.042.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验