Suppr超能文献

用于基因表达转录后调控的可调核糖调节开关

Tunable Riboregulator Switches for Post-transcriptional Control of Gene Expression.

作者信息

Krishnamurthy Malathy, Hennelly Scott P, Dale Taraka, Starkenburg Shawn R, Martí-Arbona Ricardo, Fox David T, Twary Scott N, Sanbonmatsu Karissa Y, Unkefer Clifford J

机构信息

Bioenergy and Biome Sciences, Bioscience Division, ‡Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States.

出版信息

ACS Synth Biol. 2015 Dec 18;4(12):1326-34. doi: 10.1021/acssynbio.5b00041. Epub 2015 Jul 27.

Abstract

Until recently, engineering strategies for altering gene expression have focused on transcription control using strong inducible promoters or one of several methods to knock down wasteful genes. Recently, synthetic riboregulators have been developed for translational regulation of gene expression. Here, we report a new modular synthetic riboregulator class that has the potential to finely tune protein expression and independently control the concentration of each enzyme in an engineered metabolic pathway. This development is important because the most straightforward approach to altering the flux through a particular metabolic step is to increase or decrease the concentration of the enzyme. Our design includes a cis-repressor at the 5' end of the mRNA that forms a stem-loop helix, occluding the ribosomal binding sequence and blocking translation. A trans-expressed activating-RNA frees the ribosomal-binding sequence, which turns on translation. The overall architecture of the riboregulators is designed using Watson-Crick base-pairing stability. We describe here a cis-repressor that can completely shut off translation of antibiotic-resistance reporters and a trans-activator that restores translation. We have established that it is possible to use these riboregulators to achieve translational control of gene expression over a wide dynamic range. We have also found that a targeting sequence can be modified to develop riboregulators that can, in principle, independently regulate translation of many genes. In a selection experiment, we demonstrated that by subtly altering the sequence of the trans-activator it is possible to alter the ratio of the repressed and activated states and to achieve intermediate translational control.

摘要

直到最近,改变基因表达的工程策略一直集中在使用强诱导型启动子进行转录控制,或者采用几种方法之一来敲除无用基因。最近,已开发出用于基因表达翻译调控的合成核糖调节因子。在此,我们报告了一种新型模块化合成核糖调节因子类别,它有可能精细调节蛋白质表达,并独立控制工程代谢途径中每种酶的浓度。这一进展很重要,因为改变特定代谢步骤通量的最直接方法是增加或降低酶的浓度。我们的设计在mRNA的5'端包含一个顺式阻遏物,它形成一个茎环螺旋,封闭核糖体结合序列并阻断翻译。一个反式表达的激活RNA释放核糖体结合序列,从而开启翻译。核糖调节因子的整体结构是利用沃森-克里克碱基对稳定性设计的。我们在此描述了一种能完全关闭抗生素抗性报告基因翻译的顺式阻遏物和一种能恢复翻译的反式激活剂。我们已经确定可以使用这些核糖调节因子在很宽的动态范围内实现基因表达的翻译控制。我们还发现可以对靶向序列进行修饰,以开发原则上能够独立调节许多基因翻译的核糖调节因子。在一项筛选实验中,我们证明通过微妙地改变反式激活剂的序列,有可能改变抑制态和激活态的比例,并实现中间水平的翻译控制。

相似文献

1
Tunable Riboregulator Switches for Post-transcriptional Control of Gene Expression.
ACS Synth Biol. 2015 Dec 18;4(12):1326-34. doi: 10.1021/acssynbio.5b00041. Epub 2015 Jul 27.
2
Quantitative Characterization of Translational Riboregulators Using an in Vitro Transcription-Translation System.
ACS Synth Biol. 2018 May 18;7(5):1269-1278. doi: 10.1021/acssynbio.7b00387. Epub 2018 Apr 18.
3
Exploring of the feature space of de novo developed post-transcriptional riboregulators.
PLoS Comput Biol. 2018 Aug 17;14(8):e1006170. doi: 10.1371/journal.pcbi.1006170. eCollection 2018 Aug.
5
Improving the gene-regulation ability of small RNAs by scaffold engineering in Escherichia coli.
ACS Synth Biol. 2014 Mar 21;3(3):152-62. doi: 10.1021/sb4000959. Epub 2013 Dec 18.
6
Novel Translation Initiation Regulation Mechanism in Escherichia coli ptrB Mediated by a 5'-Terminal AUG.
J Bacteriol. 2017 Jun 27;199(14). doi: 10.1128/JB.00091-17. Print 2017 Jul 15.
8
Single-molecule FRET studies on the cotranscriptional folding of a thiamine pyrophosphate riboswitch.
Proc Natl Acad Sci U S A. 2018 Jan 9;115(2):331-336. doi: 10.1073/pnas.1712983115. Epub 2017 Dec 26.
9
Improving the induction fold of riboregulators for cyanobacteria.
RNA Biol. 2018 Mar 4;15(3):353-358. doi: 10.1080/15476286.2017.1422470. Epub 2018 Feb 1.
10
A Modular Genetic System for High-Throughput Profiling and Engineering of Multi-Target Small RNAs.
Methods Mol Biol. 2018;1737:373-391. doi: 10.1007/978-1-4939-7634-8_21.

引用本文的文献

3
Precise Genomic Riboregulator Control of Metabolic Flux in Microbial Systems.
ACS Synth Biol. 2022 Oct 21;11(10):3216-3227. doi: 10.1021/acssynbio.1c00638. Epub 2022 Sep 21.
4
Building an RNA-Based Toggle Switch Using Inhibitory RNA Aptamers.
ACS Synth Biol. 2022 Feb 18;11(2):562-569. doi: 10.1021/acssynbio.1c00580. Epub 2022 Feb 8.
6
A deep learning approach to programmable RNA switches.
Nat Commun. 2020 Oct 7;11(1):5057. doi: 10.1038/s41467-020-18677-1.
7
Synthetic regulatory RNAs selectively suppress the progression of bladder cancer.
J Exp Clin Cancer Res. 2017 Oct 30;36(1):151. doi: 10.1186/s13046-017-0626-x.
8
Allosteric DNA nanoswitches for controlled release of a molecular cargo triggered by biological inputs.
Chem Sci. 2017 Feb 1;8(2):914-920. doi: 10.1039/c6sc03404g. Epub 2016 Nov 3.
9
Bacterial genome engineering and synthetic biology: combating pathogens.
BMC Microbiol. 2016 Nov 4;16(1):258. doi: 10.1186/s12866-016-0876-3.

本文引用的文献

1
Toehold switches: de-novo-designed regulators of gene expression.
Cell. 2014 Nov 6;159(4):925-39. doi: 10.1016/j.cell.2014.10.002. Epub 2014 Oct 23.
2
Dissecting engineered cell types and enhancing cell fate conversion via CellNet.
Cell. 2014 Aug 14;158(4):889-902. doi: 10.1016/j.cell.2014.07.021.
3
Engineering synergy in biotechnology.
Nat Chem Biol. 2014 May;10(5):319-22. doi: 10.1038/nchembio.1519.
4
Improving the gene-regulation ability of small RNAs by scaffold engineering in Escherichia coli.
ACS Synth Biol. 2014 Mar 21;3(3):152-62. doi: 10.1021/sb4000959. Epub 2013 Dec 18.
5
Metabolic pathway optimization using ribosome binding site variants and combinatorial gene assembly.
Appl Microbiol Biotechnol. 2014 Feb;98(4):1567-81. doi: 10.1007/s00253-013-5361-4. Epub 2013 Nov 21.
6
Metabolic engineering: past and future.
Annu Rev Chem Biomol Eng. 2013;4:259-88. doi: 10.1146/annurev-chembioeng-061312-103312. Epub 2013 Mar 27.
7
Precise and reliable gene expression via standard transcription and translation initiation elements.
Nat Methods. 2013 Apr;10(4):354-60. doi: 10.1038/nmeth.2404. Epub 2013 Mar 10.
8
A dynamic metabolite valve for the control of central carbon metabolism.
Metab Eng. 2012 Nov;14(6):661-71. doi: 10.1016/j.ymben.2012.08.006. Epub 2012 Sep 28.
9
Microbial engineering for the production of advanced biofuels.
Nature. 2012 Aug 16;488(7411):320-8. doi: 10.1038/nature11478.
10
Genetic switchboard for synthetic biology applications.
Proc Natl Acad Sci U S A. 2012 Apr 10;109(15):5850-5. doi: 10.1073/pnas.1203808109. Epub 2012 Mar 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验