Dalhousie University , Halifax, Nova Scotia, Canada.
Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts, United States.
Environ Sci Technol. 2015 Sep 1;49(17):10482-91. doi: 10.1021/acs.est.5b02076. Epub 2015 Aug 20.
We used a geographically weighted regression (GWR) statistical model to represent bias of fine particulate matter concentrations (PM2.5) derived from a 1 km optimal estimate (OE) aerosol optical depth (AOD) satellite retrieval that used AOD-to-PM2.5 relationships from a chemical transport model (CTM) for 2004-2008 over North America. This hybrid approach combined the geophysical understanding and global applicability intrinsic to the CTM relationships with the knowledge provided by observational constraints. Adjusting the OE PM2.5 estimates according to the GWR-predicted bias yielded significant improvement compared with unadjusted long-term mean values (R(2) = 0.82 versus R(2) = 0.62), even when a large fraction (70%) of sites were withheld for cross-validation (R(2) = 0.78) and developed seasonal skill (R(2) = 0.62-0.89). The effect of individual GWR predictors on OE PM2.5 estimates additionally provided insight into the sources of uncertainty for global satellite-derived PM2.5 estimates. These predictor-driven effects imply that local variability in surface elevation and urban emissions are important sources of uncertainty in geophysical calculations of the AOD-to-PM2.5 relationship used in satellite-derived PM2.5 estimates over North America, and potentially worldwide.
我们使用地理加权回归(GWR)统计模型来表示 2004-2008 年北美洲 1 公里最佳估计(OE)气溶胶光学深度(AOD)卫星反演中细颗粒物(PM2.5)浓度的偏差,该模型使用了化学传输模型(CTM)中的 AOD-PM2.5 关系。这种混合方法结合了 CTM 关系中固有的地球物理理解和全球适用性,以及观测约束提供的知识。根据 GWR 预测的偏差调整 OE PM2.5 估计值,与未经调整的长期平均值相比,显著提高了模型的拟合效果(R²=0.82 对 R²=0.62),即使有很大一部分(70%)站点被用于交叉验证(R²=0.78),该方法也具有季节性预测技能(R²=0.62-0.89)。GWR 预测因子对 OE PM2.5 估计值的影响,进一步深入了解了全球卫星衍生 PM2.5 估计值的不确定性来源。这些由预测因子驱动的影响表明,在北美地区,卫星衍生 PM2.5 估计值中,地表高程和城市排放的局部变化是 AOD-PM2.5 关系地球物理计算中不确定性的重要来源,并且可能在全球范围内也是如此。