Kwon Deukwoo, Reis Isildinha M
Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, 33136, USA.
Department of Public Health Sciences, University of Miami, Miami, FL, 33136, USA.
BMC Med Res Methodol. 2015 Aug 12;15:61. doi: 10.1186/s12874-015-0055-5.
When conducting a meta-analysis of a continuous outcome, estimated means and standard deviations from the selected studies are required in order to obtain an overall estimate of the mean effect and its confidence interval. If these quantities are not directly reported in the publications, they must be estimated from other reported summary statistics, such as the median, the minimum, the maximum, and quartiles.
We propose a simulation-based estimation approach using the Approximate Bayesian Computation (ABC) technique for estimating mean and standard deviation based on various sets of summary statistics found in published studies. We conduct a simulation study to compare the proposed ABC method with the existing methods of Hozo et al. (2005), Bland (2015), and Wan et al. (2014).
In the estimation of the standard deviation, our ABC method performs better than the other methods when data are generated from skewed or heavy-tailed distributions. The corresponding average relative error (ARE) approaches zero as sample size increases. In data generated from the normal distribution, our ABC performs well. However, the Wan et al. method is best for estimating standard deviation under normal distribution. In the estimation of the mean, our ABC method is best regardless of assumed distribution.
ABC is a flexible method for estimating the study-specific mean and standard deviation for meta-analysis, especially with underlying skewed or heavy-tailed distributions. The ABC method can be applied using other reported summary statistics such as the posterior mean and 95 % credible interval when Bayesian analysis has been employed.
在对连续型结局进行荟萃分析时,需要所选研究的估计均值和标准差,以便获得平均效应的总体估计及其置信区间。如果这些量未在出版物中直接报告,则必须根据其他报告的汇总统计量进行估计,例如中位数、最小值、最大值和四分位数。
我们提出一种基于模拟的估计方法,使用近似贝叶斯计算(ABC)技术,根据已发表研究中发现的各种汇总统计量集来估计均值和标准差。我们进行了一项模拟研究,以将所提出的ABC方法与Hozo等人(2005年)、Bland(2015年)和Wan等人(2014年)的现有方法进行比较。
在标准差的估计中,当数据来自偏态或重尾分布时,我们的ABC方法比其他方法表现更好。随着样本量增加,相应的平均相对误差(ARE)趋近于零。在正态分布生成的数据中,我们的ABC方法表现良好。然而,Wan等人的方法在正态分布下估计标准差时最佳。在均值的估计中,无论假设的分布如何,我们的ABC方法都是最佳的。
ABC是一种灵活的方法,用于估计荟萃分析中特定研究的均值和标准差,特别是对于潜在的偏态或重尾分布。当采用贝叶斯分析时,ABC方法可以使用其他报告的汇总统计量,如后验均值和95%可信区间来应用。