Suppr超能文献

通过在转铁蛋白与纳米颗粒核心之间添加酸可裂解连接,增加靶向纳米颗粒的脑摄取。

Increased brain uptake of targeted nanoparticles by adding an acid-cleavable linkage between transferrin and the nanoparticle core.

作者信息

Clark Andrew J, Davis Mark E

机构信息

Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125.

Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125

出版信息

Proc Natl Acad Sci U S A. 2015 Oct 6;112(40):12486-91. doi: 10.1073/pnas.1517048112. Epub 2015 Sep 21.

Abstract

Most therapeutic agents are excluded from entering the central nervous system by the blood-brain barrier (BBB). Receptor mediated transcytosis (RMT) is a common mechanism used by proteins, including transferrin (Tf), to traverse the BBB. Here, we prepared Tf-containing, 80-nm gold nanoparticles with an acid-cleavable linkage between the Tf and the nanoparticle core to facilitate nanoparticle RMT across the BBB. These nanoparticles are designed to bind to Tf receptors (TfRs) with high avidity on the blood side of the BBB, but separate from their multidentate Tf-TfR interactions upon acidification during the transcytosis process to allow release of the nanoparticle into the brain. These targeted nanoparticles show increased ability to cross an in vitro model of the BBB and, most important, enter the brain parenchyma of mice in greater amounts in vivo after systemic administration compared with similar high-avidity nanoparticles containing noncleavable Tf. In addition, we investigated this design with nanoparticles containing high-affinity antibodies (Abs) to TfR. With the Abs, the addition of the acid-cleavable linkage provided no improvement to in vivo brain uptake for Ab-containing nanoparticles, and overall brain uptake was decreased for all Ab-containing nanoparticles compared with Tf-containing ones. These results are consistent with recent reports of high-affinity anti-TfR Abs trafficking to the lysosome within BBB endothelium. In contrast, high-avidity, Tf-containing nanoparticles with the acid-cleavable linkage avoid major endothelium retention by shedding surface Tf during their transcytosis.

摘要

大多数治疗药物会被血脑屏障(BBB)阻止进入中枢神经系统。受体介导的转胞吞作用(RMT)是包括转铁蛋白(Tf)在内的蛋白质穿越血脑屏障所采用的一种常见机制。在此,我们制备了含Tf的80纳米金纳米颗粒,Tf与纳米颗粒核心之间通过酸可裂解连接,以促进纳米颗粒通过血脑屏障进行RMT。这些纳米颗粒设计用于在血脑屏障的血液侧与Tf受体(TfRs)高亲和力结合,但在转胞吞过程中酸化时,会从其多齿Tf-TfR相互作用中分离,从而使纳米颗粒释放到脑内。与含有不可裂解Tf的类似高亲和力纳米颗粒相比,这些靶向纳米颗粒在体外血脑屏障模型中显示出更强的穿越能力,最重要的是,在全身给药后,在体内能以更大数量进入小鼠脑实质。此外,我们用含有高亲和力抗TfR抗体(Abs)的纳米颗粒研究了这种设计。对于含抗体的纳米颗粒,添加酸可裂解连接并未改善其在体内的脑摄取,而且与含Tf的纳米颗粒相比,所有含抗体的纳米颗粒的总体脑摄取都降低了。这些结果与最近关于高亲和力抗TfR抗体在血脑屏障内皮细胞内转运至溶酶体的报道一致。相比之下,具有酸可裂解连接的高亲和力、含Tf的纳米颗粒在转胞吞过程中通过脱落表面Tf避免了在内皮细胞中的主要滞留。

相似文献

1
Increased brain uptake of targeted nanoparticles by adding an acid-cleavable linkage between transferrin and the nanoparticle core.
Proc Natl Acad Sci U S A. 2015 Oct 6;112(40):12486-91. doi: 10.1073/pnas.1517048112. Epub 2015 Sep 21.
2
Transcytosis and brain uptake of transferrin-containing nanoparticles by tuning avidity to transferrin receptor.
Proc Natl Acad Sci U S A. 2013 May 21;110(21):8662-7. doi: 10.1073/pnas.1307152110. Epub 2013 May 6.
5
Trafficking of Gold Nanoparticles Coated with the 8D3 Anti-Transferrin Receptor Antibody at the Mouse Blood-Brain Barrier.
Mol Pharm. 2015 Nov 2;12(11):4137-45. doi: 10.1021/acs.molpharmaceut.5b00597. Epub 2015 Oct 15.
6
Boosting brain uptake of a therapeutic antibody by reducing its affinity for a transcytosis target.
Sci Transl Med. 2011 May 25;3(84):84ra44. doi: 10.1126/scitranslmed.3002230.
7
Antibody affinity and valency impact brain uptake of transferrin receptor-targeted gold nanoparticles.
Theranostics. 2018 May 24;8(12):3416-3436. doi: 10.7150/thno.25228. eCollection 2018.
8
Nanoparticle accumulation and transcytosis in brain endothelial cell layers.
Nanoscale. 2013 Nov 21;5(22):11153-65. doi: 10.1039/c3nr02905k. Epub 2013 Sep 27.
9
Study of the transcytosis of an anti-transferrin receptor antibody with a Fab' cargo across the blood-brain barrier in mice.
Eur J Pharm Sci. 2013 Jul 16;49(4):556-64. doi: 10.1016/j.ejps.2013.05.027. Epub 2013 Jun 7.

引用本文的文献

1
Visualising sub-second dynamics of nanoparticle extravasation .
bioRxiv. 2025 Aug 12:2025.08.10.669578. doi: 10.1101/2025.08.10.669578.
2
Nanotherapeutic Strategies for Overcoming the Blood-Brain Barrier: Applications in Disease Modeling and Drug Delivery.
ACS Omega. 2025 Jul 24;10(30):32606-32625. doi: 10.1021/acsomega.5c02206. eCollection 2025 Aug 5.
3
Engineered brain-targeting exosome for reprogramming immunosuppressive microenvironment of glioblastoma.
Exploration (Beijing). 2024 Jun 26;5(2):20240039. doi: 10.1002/EXP.20240039. eCollection 2025 Apr.
4
Developments in nanotechnology approaches for the treatment of solid tumors.
Exp Hematol Oncol. 2025 May 19;14(1):76. doi: 10.1186/s40164-025-00656-1.
5
Peptide-functionalized nanoparticles for brain-targeted therapeutics.
Drug Deliv Transl Res. 2025 Mar 31. doi: 10.1007/s13346-025-01840-w.
8
Inorganic Nanoparticles-based Drug Delivery Systems for Neurodegenerative Diseases Therapy.
Curr Pharm Des. 2025;31(25):1998-2024. doi: 10.2174/0113816128352935250116064725.
9
Cochlear Mechanics Are Preserved After Inner Ear Delivery of Gold Nanoparticles.
Int J Mol Sci. 2024 Dec 26;26(1):126. doi: 10.3390/ijms26010126.

本文引用的文献

1
Targeting receptor-mediated transport for delivery of biologics across the blood-brain barrier.
Annu Rev Pharmacol Toxicol. 2015;55:613-31. doi: 10.1146/annurev-pharmtox-010814-124852. Epub 2014 Oct 8.
2
A human blood-brain barrier transcytosis assay reveals antibody transcytosis influenced by pH-dependent receptor binding.
PLoS One. 2014 Apr 30;9(4):e96340. doi: 10.1371/journal.pone.0096340. eCollection 2014.
3
Transferrin receptor (TfR) trafficking determines brain uptake of TfR antibody affinity variants.
J Exp Med. 2014 Feb 10;211(2):233-44. doi: 10.1084/jem.20131660. Epub 2014 Jan 27.
5
Transcytosis and brain uptake of transferrin-containing nanoparticles by tuning avidity to transferrin receptor.
Proc Natl Acad Sci U S A. 2013 May 21;110(21):8662-7. doi: 10.1073/pnas.1307152110. Epub 2013 May 6.
6
Acid-degradable polymers for drug delivery: a decade of innovation.
Chem Commun (Camb). 2013 Mar 14;49(21):2082-102. doi: 10.1039/c2cc36589h.
7
Structure and dynamics of drug carriers and their interaction with cellular receptors: focus on serum transferrin.
Adv Drug Deliv Rev. 2013 Jul;65(8):1012-9. doi: 10.1016/j.addr.2012.11.001. Epub 2012 Nov 23.
8
A dense poly(ethylene glycol) coating improves penetration of large polymeric nanoparticles within brain tissue.
Sci Transl Med. 2012 Aug 29;4(149):149ra119. doi: 10.1126/scitranslmed.3003594.
9
Modern methods for delivery of drugs across the blood-brain barrier.
Adv Drug Deliv Rev. 2012 May 15;64(7):640-65. doi: 10.1016/j.addr.2011.11.010. Epub 2011 Nov 28.
10
Cleavable linkers in chemical biology.
Bioorg Med Chem. 2012 Jan 15;20(2):571-82. doi: 10.1016/j.bmc.2011.07.048. Epub 2011 Jul 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验