Arnold Laurence H, Groom Harriet C T, Kunzelmann Simone, Schwefel David, Caswell Sarah J, Ordonez Paula, Mann Melanie C, Rueschenbaum Sabrina, Goldstone David C, Pennell Simon, Howell Steven A, Stoye Jonathan P, Webb Michelle, Taylor Ian A, Bishop Kate N
The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London, United Kingdom.
The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London, United Kingdom; Faculty of Medicine, Imperial College London, London, United Kingdom.
PLoS Pathog. 2015 Oct 2;11(10):e1005194. doi: 10.1371/journal.ppat.1005194. eCollection 2015 Oct.
SAMHD1 restricts HIV-1 infection of myeloid-lineage and resting CD4+ T-cells. Most likely this occurs through deoxynucleoside triphosphate triphosphohydrolase activity that reduces cellular dNTP to a level where reverse transcriptase cannot function, although alternative mechanisms have been proposed recently. Here, we present combined structural and virological data demonstrating that in addition to allosteric activation and triphosphohydrolase activity, restriction correlates with the capacity of SAMHD1 to form "long-lived" enzymatically competent tetramers. Tetramer disruption invariably abolishes restriction but has varied effects on in vitro triphosphohydrolase activity. SAMHD1 phosphorylation also ablates restriction and tetramer formation but without affecting triphosphohydrolase steady-state kinetics. However phospho-SAMHD1 is unable to catalyse dNTP turnover under conditions of nucleotide depletion. Based on our findings we propose a model for phosphorylation-dependent regulation of SAMHD1 activity where dephosphorylation switches housekeeping SAMHD1 found in cycling cells to a high-activity stable tetrameric form that depletes and maintains low levels of dNTPs in differentiated cells.
SAMHD1限制HIV-1对髓系谱系细胞和静息CD4+ T细胞的感染。这很可能是通过脱氧核苷三磷酸三磷酸水解酶活性实现的,该活性可将细胞内的脱氧核苷三磷酸(dNTP)水平降低至逆转录酶无法发挥作用的程度,尽管最近有人提出了其他机制。在此,我们展示了结合的结构和病毒学数据,表明除了别构激活和三磷酸水解酶活性外,限制作用还与SAMHD1形成“长寿命”的具有酶活性的四聚体的能力相关。四聚体的破坏总是会消除限制作用,但对体外三磷酸水解酶活性有不同影响。SAMHD1的磷酸化也会消除限制作用和四聚体形成,但不影响三磷酸水解酶的稳态动力学。然而,磷酸化的SAMHD1在核苷酸耗竭的条件下无法催化dNTP周转。基于我们的发现,我们提出了一个SAMHD1活性的磷酸化依赖性调节模型,其中去磷酸化将循环细胞中发现的管家型SAMHD1转换为高活性稳定的四聚体形式,这种形式可消耗并维持分化细胞中低水平的dNTP。