Suppr超能文献

小胶质细胞:突触发育和可塑性的动态调节因子

Microglia: Dynamic Mediators of Synapse Development and Plasticity.

作者信息

Wu Yuwen, Dissing-Olesen Lasse, MacVicar Brian A, Stevens Beth

机构信息

Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02215, USA; These authors contributed equally to this work.

Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 2B5, Canada; These authors contributed equally to this work.

出版信息

Trends Immunol. 2015 Oct;36(10):605-613. doi: 10.1016/j.it.2015.08.008.

Abstract

Neuronal communication underlies all brain activity and the genesis of complex behavior. Emerging research has revealed an unexpected role for immune molecules in the development and plasticity of neuronal synapses. Moreover microglia, the resident immune cells of the brain, express and secrete immune-related signaling molecules that alter synaptic transmission and plasticity in the absence of inflammation. When inflammation does occur, microglia modify synaptic connections and synaptic plasticity required for learning and memory. Here we review recent findings demonstrating how the dynamic interactions between neurons and microglia shape the circuitry of the nervous system in the healthy brain and how altered neuron-microglia signaling could contribute to disease.

摘要

神经元通讯是所有脑活动以及复杂行为产生的基础。新兴研究揭示了免疫分子在神经元突触发育和可塑性方面发挥的意想不到的作用。此外,小胶质细胞作为大脑中的常驻免疫细胞,会表达并分泌免疫相关信号分子,这些分子在无炎症的情况下会改变突触传递和可塑性。当炎症确实发生时,小胶质细胞会改变学习和记忆所需的突触连接和突触可塑性。在此,我们综述了近期的研究发现,这些发现展示了在健康大脑中神经元与小胶质细胞之间的动态相互作用如何塑造神经系统的回路,以及神经元 - 小胶质细胞信号改变如何导致疾病。

相似文献

1
Microglia: Dynamic Mediators of Synapse Development and Plasticity.
Trends Immunol. 2015 Oct;36(10):605-613. doi: 10.1016/j.it.2015.08.008.
2
Immune dysregulation and cognitive vulnerability in the aging brain: Interactions of microglia, IL-1β, BDNF and synaptic plasticity.
Neuropharmacology. 2015 Sep;96(Pt A):11-8. doi: 10.1016/j.neuropharm.2014.12.020. Epub 2014 Dec 27.
3
The "quad-partite" synapse: microglia-synapse interactions in the developing and mature CNS.
Glia. 2013 Jan;61(1):24-36. doi: 10.1002/glia.22389. Epub 2012 Jul 24.
4
Functions of microglia in the central nervous system--beyond the immune response.
Neuron Glia Biol. 2011 Feb;7(1):47-53. doi: 10.1017/S1740925X12000063. Epub 2012 May 22.
5
Microglia in neuronal plasticity: Influence of stress.
Neuropharmacology. 2015 Sep;96(Pt A):19-28. doi: 10.1016/j.neuropharm.2014.12.034. Epub 2015 Jan 9.
6
Microglia: actively surveying and shaping neuronal circuit structure and function.
Trends Neurosci. 2013 Apr;36(4):209-17. doi: 10.1016/j.tins.2012.11.007. Epub 2012 Dec 20.
7
Microglia: a new frontier for synaptic plasticity, learning and memory, and neurodegenerative disease research.
Neurobiol Learn Mem. 2013 Oct;105:40-53. doi: 10.1016/j.nlm.2013.07.002. Epub 2013 Jul 10.
8
Microglia regulate synaptic development and plasticity.
Dev Neurobiol. 2021 Jul;81(5):568-590. doi: 10.1002/dneu.22814. Epub 2021 Mar 8.
9
[Astrocytes and microglia: active players in synaptic plasticity].
Med Sci (Paris). 2017 Dec;33(12):1071-1078. doi: 10.1051/medsci/20173312014. Epub 2017 Dec 20.
10
Microglia: an active player in the regulation of synaptic activity.
Neural Plast. 2013;2013:627325. doi: 10.1155/2013/627325. Epub 2013 Nov 3.

引用本文的文献

1
Bridging the molecular and clinical aspects of resveratrol in Alzheimer's disease: a review.
3 Biotech. 2025 Sep;15(9):284. doi: 10.1007/s13205-025-04451-x. Epub 2025 Aug 6.
2
Orchestrating the Matrix: The Role of Glial Cells and Systemic Signals in Perineuronal Net Dynamics.
Neurochem Res. 2025 Jul 29;50(4):253. doi: 10.1007/s11064-025-04506-8.
3
Spatial proteomics of Alzheimer's disease-specific human microglial states.
Nat Immunol. 2025 Jul 22. doi: 10.1038/s41590-025-02203-w.
4
Microglial Dystrophy and Spatial Learning Impairments Following Exposure to Multiple Early-life Stressors in Rats.
Ann Neurosci. 2025 Jul 18:09727531251324716. doi: 10.1177/09727531251324716.
6
Neuron-to-glia signaling drives critical period experience-dependent synapse pruning.
Sci Rep. 2025 Jul 16;15(1):25744. doi: 10.1038/s41598-025-11528-3.
7
COG1410 Alleviated Chronic Sleep Deprivation-Induced Memory Loss by Regulating Microglial Phagocytosis and Inhibiting Hippocampal Inflammation.
ACS Chem Neurosci. 2025 Aug 6;16(15):2921-2934. doi: 10.1021/acschemneuro.5c00214. Epub 2025 Jul 8.
9
Synaptic proteins that aggregate and degrade slower with aging accumulate in microglia.
bioRxiv. 2025 May 21:2025.05.20.654652. doi: 10.1101/2025.05.20.654652.

本文引用的文献

1
Fractalkine in the nervous system: neuroprotective or neurotoxic molecule?
Ann N Y Acad Sci. 2015 Sep;1351:141-8. doi: 10.1111/nyas.12805. Epub 2015 Jun 17.
4
Activation of neuronal NMDA receptors triggers transient ATP-mediated microglial process outgrowth.
J Neurosci. 2014 Aug 6;34(32):10511-27. doi: 10.1523/JNEUROSCI.0405-14.2014.
5
An adaptive role of TNFα in the regulation of striatal synapses.
J Neurosci. 2014 Apr 30;34(18):6146-55. doi: 10.1523/JNEUROSCI.3481-13.2014.
6
Synapse elimination and learning rules co-regulated by MHC class I H2-Db.
Nature. 2014 May 8;509(7499):195-200. doi: 10.1038/nature13154. Epub 2014 Mar 30.
7
Microglial CR3 activation triggers long-term synaptic depression in the hippocampus via NADPH oxidase.
Neuron. 2014 Apr 2;82(1):195-207. doi: 10.1016/j.neuron.2014.01.043. Epub 2014 Mar 13.
8
Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behavior.
Nat Neurosci. 2014 Mar;17(3):400-6. doi: 10.1038/nn.3641. Epub 2014 Feb 2.
9
Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor.
Cell. 2013 Dec 19;155(7):1596-609. doi: 10.1016/j.cell.2013.11.030.
10
TGF-β signaling regulates neuronal C1q expression and developmental synaptic refinement.
Nat Neurosci. 2013 Dec;16(12):1773-82. doi: 10.1038/nn.3560. Epub 2013 Oct 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验