Suppr超能文献

细胞分泌的基质使分化的间充质干细胞的成骨表型得以延续。

Cell-secreted matrices perpetuate the bone-forming phenotype of differentiated mesenchymal stem cells.

作者信息

Hoch Allison I, Mittal Vaishali, Mitra Debika, Vollmer Nina, Zikry Christopher A, Leach J Kent

机构信息

Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, United States.

Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, United States; Department of Orthopaedic Surgery, School of Medicine, University of California, Davis, Sacramento, CA 95817, United States.

出版信息

Biomaterials. 2016 Jan;74:178-87. doi: 10.1016/j.biomaterials.2015.10.003. Epub 2015 Oct 9.

Abstract

Prior to transplantation, mesenchymal stem/stromal cells (MSCs) can be induced toward the osteoblastic phenotype using a cocktail of soluble supplements. However, there is little evidence of differentiated MSCs directly participating in bone formation, suggesting that MSCs may either die or revert in phenotype upon transplantation. Cell-secreted decellularized extracellular matrices (DMs) are a promising platform to confer bioactivity and direct cell fate through the presentation of a complex and physiologically relevant milieu. Therefore, we examined the capacity of biomimetic DMs to preserve the mineral-producing phenotype upon withdrawal of the induction stimulus. Regardless of induction duration, ranging up to 6 weeks, MSCs exhibited up to a 5-fold reduction in osteogenic markers within 24 h following stimulus withdrawal. We show that seeding osteogenically induced MSCs on DMs yields up to 2-fold more calcium deposition than tissue culture plastic, and this improvement is at least partially mediated by increasing actin cytoskeletal tension via the ROCK II pathway. MSCs on DMs also secreted 25% more vascular endothelial growth factor (VEGF), a crucial endogenous proangiogenic factor that is abrogated during MSC osteogenic differentiation. The deployment of DMs into a subcutaneous ectopic site enhanced the persistence of MSCs 5-fold, vessel density 3-fold, and bone formation 2-fold more than MSCs delivered without DMs. These results underscore the need for deploying MSCs using biomaterial platforms such as DMs to preserve the in vitro-acquired mineral-producing phenotype and accelerate the process of bone repair.

摘要

在移植前,间充质干/基质细胞(MSCs)可以使用可溶性补充剂混合物诱导成骨细胞表型。然而,几乎没有证据表明分化的MSCs直接参与骨形成,这表明MSCs在移植后可能死亡或表型逆转。细胞分泌的脱细胞细胞外基质(DMs)是一个很有前景的平台,通过呈现复杂且生理相关的环境来赋予生物活性并指导细胞命运。因此,我们研究了仿生DMs在撤除诱导刺激后保持产矿表型的能力。无论诱导持续时间长达6周,MSCs在撤除刺激后24小时内成骨标志物最多降低5倍。我们发现,将成骨诱导的MSCs接种在DMs上比接种在组织培养塑料上产生的钙沉积多2倍,这种改善至少部分是通过ROCK II途径增加肌动蛋白细胞骨架张力来介导的。接种在DMs上的MSCs还多分泌25%的血管内皮生长因子(VEGF),这是一种关键的内源性促血管生成因子,在MSC成骨分化过程中被消除。将DMs植入皮下异位部位比未使用DMs递送的MSCs使MSCs的持久性提高5倍、血管密度提高3倍、骨形成提高2倍。这些结果强调了使用DMs等生物材料平台来递送MSCs以保持体外获得的产矿表型并加速骨修复过程的必要性。

相似文献

1
Cell-secreted matrices perpetuate the bone-forming phenotype of differentiated mesenchymal stem cells.
Biomaterials. 2016 Jan;74:178-87. doi: 10.1016/j.biomaterials.2015.10.003. Epub 2015 Oct 9.
2
Mesenchymal Stem Cell Spheroids Retain Osteogenic Phenotype Through α2β1 Signaling.
Stem Cells Transl Med. 2016 Sep;5(9):1229-37. doi: 10.5966/sctm.2015-0412. Epub 2016 Jun 30.
3
Dextran sulfate-amplified extracellular matrix deposition promotes osteogenic differentiation of mesenchymal stem cells.
Acta Biomater. 2022 Mar 1;140:163-177. doi: 10.1016/j.actbio.2021.11.049. Epub 2021 Dec 4.
4
Design of experiments approach to engineer cell-secreted matrices for directing osteogenic differentiation.
Ann Biomed Eng. 2011 Apr;39(4):1174-85. doi: 10.1007/s10439-010-0217-x. Epub 2010 Dec 1.
5
Transferable cell-secreted extracellular matrices enhance osteogenic differentiation.
Acta Biomater. 2012 Feb;8(2):744-52. doi: 10.1016/j.actbio.2011.10.035. Epub 2011 Nov 4.
9
Nascent osteoblast matrix inhibits osteogenesis of human mesenchymal stem cells in vitro.
Stem Cell Res Ther. 2015 Dec 22;6:258. doi: 10.1186/s13287-015-0223-x.

引用本文的文献

2
Decellularized Cell-Secreted Extracellular Matrices as Biomaterials for Tissue Engineering.
Small Sci. 2024 Dec 6;5(2):2400335. doi: 10.1002/smsc.202400335. eCollection 2025 Feb.
4
[Advantages and prospects of cell derived decellularized extracellular matrix as tissue engineering scaffolds].
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2024 Nov 15;38(11):1291-1298. doi: 10.7507/1002-1892.202404114.
7
Biofabrication of functional bone tissue: defining tissue-engineered scaffolds from nature.
Front Bioeng Biotechnol. 2023 Aug 8;11:1185841. doi: 10.3389/fbioe.2023.1185841. eCollection 2023.
10
Macromolecular crowding and decellularization method increase the growth factor binding potential of cell-secreted extracellular matrices.
Front Bioeng Biotechnol. 2023 Jan 23;11:1091157. doi: 10.3389/fbioe.2023.1091157. eCollection 2023.

本文引用的文献

1
Bone stem cells.
J Cell Biochem. 1998;72 Suppl 30-31(S30-31):73-82. doi: 10.1002/(SICI)1097-4644(1998)72:30/31+<73::AID-JCB11>3.0.CO;2-L.
2
Concise review: optimizing expansion of bone marrow mesenchymal stem/stromal cells for clinical applications.
Stem Cells Transl Med. 2014 May;3(5):643-52. doi: 10.5966/sctm.2013-0196. Epub 2014 Mar 28.
3
Lysophosphatidic acid protects human mesenchymal stromal cells from differentiation-dependent vulnerability to apoptosis.
Tissue Eng Part A. 2014 Apr;20(7-8):1156-64. doi: 10.1089/ten.TEA.2013.0487. Epub 2014 Feb 11.
4
Alginate hydrogels containing cell-interactive beads for bone formation.
FASEB J. 2013 Dec;27(12):4844-52. doi: 10.1096/fj.12-213611. Epub 2013 Sep 4.
5
An in vitro expansion score for tissue-engineering applications with human bone marrow-derived mesenchymal stem cells.
J Tissue Eng Regen Med. 2016 Feb;10(2):149-61. doi: 10.1002/term.1734. Epub 2013 Apr 10.
6
Tracking of replicative senescence in mesenchymal stem cells by colony-forming unit frequency.
Methods Mol Biol. 2013;976:143-54. doi: 10.1007/978-1-62703-317-6_11.
7
Cell-derived matrix coatings for polymeric scaffolds.
Tissue Eng Part A. 2012 Oct;18(19-20):2148-57. doi: 10.1089/ten.TEA.2011.0677. Epub 2012 Jul 9.
9
Differentiation-dependent secretion of proangiogenic factors by mesenchymal stem cells.
PLoS One. 2012;7(4):e35579. doi: 10.1371/journal.pone.0035579. Epub 2012 Apr 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验