Hansen Brian, Lund Torben E, Sangill Ryan, Stubbe Ebbe, Finsterbusch Jürgen, Jespersen Sune Nørhøj
Center of Functionally Integrative Neuroscience (CFIN) and MINDLab, Clinical Institute, Aarhus University, Aarhus, Denmark.
Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark.
Magn Reson Med. 2016 Nov;76(5):1455-1468. doi: 10.1002/mrm.26055. Epub 2015 Nov 26.
The clinical use of kurtosis imaging is impeded by long acquisitions and postprocessing. Recently, estimation of mean kurtosis tensor W¯ and mean diffusivity ( D¯) was made possible from 13 distinct diffusion weighted MRI acquisitions (the 1-3-9 protocol) with simple postprocessing. Here, we analyze the effects of noise and nonideal diffusion encoding, and propose a new correction strategy. We also present a 1-9-9 protocol with increased robustness to experimental imperfections and minimal additional scan time. This refinement does not affect computation time and also provides a fast estimate of fractional anisotropy (FA).
1-3-9/1-9-9 data are acquired in rat and human brains, and estimates of D¯, FA, W¯ from human brains are compared with traditional estimates from an extensive diffusion kurtosis imaging data set. Simulations are used to evaluate the influence of noise and diffusion encodings deviating from the scheme, and the performance of the correction strategy. Optimal b-values are determined from simulations and data.
Accuracy and precision in D¯ and W¯ are comparable to nonlinear least squares estimation, and is improved with the 1-9-9 protocol. The compensation strategy vastly improves parameter estimation in nonideal data.
The framework offers a robust and compact method for estimating several diffusion metrics. The protocol is easily implemented. Magn Reson Med 76:1455-1468, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
峰度成像的临床应用因采集时间长和后处理复杂而受到阻碍。最近,通过简单的后处理,利用13次不同的扩散加权磁共振成像采集(1-3-9协议)实现了平均峰度张量W¯和平均扩散率(D¯)的估计。在此,我们分析了噪声和非理想扩散编码的影响,并提出了一种新的校正策略。我们还提出了一种1-9-9协议,该协议对实验缺陷的鲁棒性增强,且额外扫描时间最少。这种改进不影响计算时间,还能快速估计分数各向异性(FA)。
在大鼠和人类大脑中采集1-3-9/1-9-9数据,并将人类大脑中D¯、FA、W¯的估计值与来自大量扩散峰度成像数据集的传统估计值进行比较。利用模拟评估噪声和偏离该方案的扩散编码的影响,以及校正策略的性能。通过模拟和数据确定最佳b值。
D¯和W¯的准确性和精度与非线性最小二乘估计相当,且1-9-9协议使其得到了提高。补偿策略极大地改善了非理想数据中的参数估计。
该框架为估计多个扩散指标提供了一种稳健且紧凑的方法。该协议易于实施。《磁共振医学》76:1455 - 摘要1468,2016年。© 2015作者。《磁共振医学》由威利期刊公司代表国际磁共振医学学会出版。这是一篇根据知识共享署名许可协议发布的开放获取文章,允许在任何媒介中使用、分发和复制,前提是正确引用原始作品。