Suppr超能文献

分子途径:肿瘤进展与治疗中的线粒体重编程

Molecular Pathways: Mitochondrial Reprogramming in Tumor Progression and Therapy.

作者信息

Caino M Cecilia, Altieri Dario C

机构信息

Prostate Cancer Discovery and Development Program, Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania.

出版信息

Clin Cancer Res. 2016 Feb 1;22(3):540-5. doi: 10.1158/1078-0432.CCR-15-0460. Epub 2015 Dec 9.

Abstract

Small-molecule inhibitors of the phosphoinositide 3-kinase (PI3K), Akt, and mTOR pathway currently in the clinic produce a paradoxical reactivation of the pathway they are intended to suppress. Furthermore, fresh experimental evidence with PI3K antagonists in melanoma, glioblastoma, and prostate cancer shows that mitochondrial metabolism drives an elaborate process of tumor adaptation culminating with drug resistance and metastatic competency. This is centered on reprogramming of mitochondrial functions to promote improved cell survival and to fuel the machinery of cell motility and invasion. Key players in these responses are molecular chaperones of the Hsp90 family compartmentalized in mitochondria, which suppress apoptosis via phosphorylation of the pore component, Cyclophilin D, and enable the subcellular repositioning of active mitochondria to membrane protrusions implicated in cell motility. An inhibitor of mitochondrial Hsp90s in preclinical development (gamitrinib) prevents adaptive mitochondrial reprogramming and shows potent antitumor activity in vitro and in vivo. Other therapeutic strategies to target mitochondria for cancer therapy include small-molecule inhibitors of mutant isocitrate dehydrogenase (IDH) IDH1 (AG-120) and IDH2 (AG-221), which opened new therapeutic prospects for patients with high-risk acute myelogenous leukemia (AML). A second approach of mitochondrial therapeutics focuses on agents that elevate toxic ROS levels from a leaky electron transport chain; nevertheless, the clinical experience with these compounds, including a quinone derivative, ARQ 501, and a copper chelator, elesclomol (STA-4783) is limited. In light of this evidence, we discuss how best to target a resurgence of mitochondrial bioenergetics for cancer therapy.

摘要

目前正在临床试验中的磷酸肌醇3激酶(PI3K)、Akt和mTOR信号通路的小分子抑制剂,会反常地重新激活它们原本想要抑制的信号通路。此外,在黑色素瘤、胶质母细胞瘤和前列腺癌中使用PI3K拮抗剂的最新实验证据表明,线粒体代谢驱动了一个复杂的肿瘤适应过程,最终导致耐药性和转移能力。这一过程的核心是线粒体功能的重新编程,以促进细胞更好地存活,并为细胞运动和侵袭机制提供能量。这些反应中的关键参与者是定位于线粒体中的Hsp90家族分子伴侣,它们通过使孔道成分亲环蛋白D磷酸化来抑制细胞凋亡,并使活性线粒体亚细胞重定位到与细胞运动有关的膜突出部位。一种处于临床前开发阶段的线粒体Hsp90抑制剂(加米替尼)可防止适应性线粒体重编程,并在体外和体内均显示出强大的抗肿瘤活性。其他针对线粒体进行癌症治疗的策略包括突变型异柠檬酸脱氢酶(IDH)IDH1(AG-120)和IDH2(AG-221)的小分子抑制剂,它们为高危急性髓性白血病(AML)患者开辟了新的治疗前景。线粒体治疗的第二种方法侧重于通过电子传递链泄漏来提高有毒活性氧水平的药物;然而,包括醌衍生物ARQ 501和铜螯合剂依斯氯铵(STA-4783)在内的这些化合物的临床经验有限。鉴于这些证据,我们讨论了如何最好地针对线粒体生物能量学复苏进行癌症治疗。

相似文献

1
Molecular Pathways: Mitochondrial Reprogramming in Tumor Progression and Therapy.
Clin Cancer Res. 2016 Feb 1;22(3):540-5. doi: 10.1158/1078-0432.CCR-15-0460. Epub 2015 Dec 9.
2
Adaptive mitochondrial reprogramming and resistance to PI3K therapy.
J Natl Cancer Inst. 2015 Feb 3;107(3). doi: 10.1093/jnci/dju502. Print 2015 Mar.
3
Disabling mitochondrial reprogramming in cancer.
Pharmacol Res. 2015 Dec;102:42-5. doi: 10.1016/j.phrs.2015.08.022. Epub 2015 Sep 10.
4
PI3K therapy reprograms mitochondrial trafficking to fuel tumor cell invasion.
Proc Natl Acad Sci U S A. 2015 Jul 14;112(28):8638-43. doi: 10.1073/pnas.1500722112. Epub 2015 Jun 29.
5
Targeting the PI3K/AKT/mTOR signaling network in acute myelogenous leukemia.
Expert Opin Investig Drugs. 2009 Sep;18(9):1333-49. doi: 10.1517/14728220903136775.
6
Mitocans Revisited: Mitochondrial Targeting as Efficient Anti-Cancer Therapy.
Int J Mol Sci. 2020 Oct 26;21(21):7941. doi: 10.3390/ijms21217941.
7
Cancer cells exploit adaptive mitochondrial dynamics to increase tumor cell invasion.
Cell Cycle. 2015;14(20):3242-7. doi: 10.1080/15384101.2015.1084448.
9
Targeting cytochrome P450-dependent cancer cell mitochondria: cancer associated CYPs and where to find them.
Cancer Metastasis Rev. 2018 Sep;37(2-3):409-423. doi: 10.1007/s10555-018-9749-6.
10
Restoration of mitochondria function as a target for cancer therapy.
Drug Discov Today. 2015 May;20(5):635-43. doi: 10.1016/j.drudis.2015.03.001. Epub 2015 Mar 9.

引用本文的文献

2
Mitochondrial ribosomal protein L3 (MRPL3): An early diagnostic biomarker and potential molecular target in pancreatic cancer.
Transl Oncol. 2025 Aug;58:102432. doi: 10.1016/j.tranon.2025.102432. Epub 2025 May 29.
3
GNA15 induces drug resistance in B cell acute lymphoblastic leukemia by promoting fatty acid oxidation via activation of the AMPK pathway.
Mol Cell Biochem. 2025 Jun;480(6):3719-3733. doi: 10.1007/s11010-024-05198-4. Epub 2025 Jan 15.
4
MIRO2 promotes cancer invasion and metastasis via MYO9B suppression of RhoA activity.
Cell Rep. 2025 Jan 28;44(1):115120. doi: 10.1016/j.celrep.2024.115120. Epub 2024 Dec 24.
7
Cyanine dyes in the mitochondria-targeting photodynamic and photothermal therapy.
Commun Chem. 2024 Aug 13;7(1):180. doi: 10.1038/s42004-024-01256-6.
8
HSD17B4 methylation enhances glucose dependence of BT-474 breast cancer cells and increases lapatinib sensitivity.
Breast Cancer Res Treat. 2023 Sep;201(2):317-328. doi: 10.1007/s10549-023-07013-y. Epub 2023 Jun 28.
9
Chlorogenic Acid Induced Neuroblastoma Cells Differentiation via the ACAT1-TPK1-PDH Pathway.
Pharmaceuticals (Basel). 2023 Jun 14;16(6):877. doi: 10.3390/ph16060877.
10
The role of mitochondria in the resistance of melanoma to PD-1 inhibitors.
J Transl Med. 2023 May 23;21(1):345. doi: 10.1186/s12967-023-04200-9.

本文引用的文献

1
PI3K therapy reprograms mitochondrial trafficking to fuel tumor cell invasion.
Proc Natl Acad Sci U S A. 2015 Jul 14;112(28):8638-43. doi: 10.1073/pnas.1500722112. Epub 2015 Jun 29.
2
Inhibition of the Mitochondrial Protease ClpP as a Therapeutic Strategy for Human Acute Myeloid Leukemia.
Cancer Cell. 2015 Jun 8;27(6):864-76. doi: 10.1016/j.ccell.2015.05.004.
4
Adaptive mitochondrial reprogramming and resistance to PI3K therapy.
J Natl Cancer Inst. 2015 Feb 3;107(3). doi: 10.1093/jnci/dju502. Print 2015 Mar.
5
The evolving role of molecular markers in the diagnosis and management of diffuse glioma.
Clin Cancer Res. 2014 Nov 15;20(22):5601-11. doi: 10.1158/1078-0432.CCR-14-0831.
6
PGC-1α mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis.
Nat Cell Biol. 2014 Oct;16(10):992-1003, 1-15. doi: 10.1038/ncb3039. Epub 2014 Sep 21.
7
Investigational cancer drugs targeting cell metabolism in clinical development.
Expert Opin Investig Drugs. 2015 Jan;24(1):79-94. doi: 10.1517/13543784.2015.960077. Epub 2014 Sep 16.
8
Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function.
Nature. 2014 Oct 30;514(7524):628-32. doi: 10.1038/nature13611. Epub 2014 Aug 10.
9
Who controls the ATP supply in cancer cells? Biochemistry lessons to understand cancer energy metabolism.
Int J Biochem Cell Biol. 2014 May;50:10-23. doi: 10.1016/j.biocel.2014.01.025. Epub 2014 Feb 7.
10
PI3K and cancer: lessons, challenges and opportunities.
Nat Rev Drug Discov. 2014 Feb;13(2):140-56. doi: 10.1038/nrd4204.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验