Caino M Cecilia, Altieri Dario C
Prostate Cancer Discovery and Development Program, Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania.
Clin Cancer Res. 2016 Feb 1;22(3):540-5. doi: 10.1158/1078-0432.CCR-15-0460. Epub 2015 Dec 9.
Small-molecule inhibitors of the phosphoinositide 3-kinase (PI3K), Akt, and mTOR pathway currently in the clinic produce a paradoxical reactivation of the pathway they are intended to suppress. Furthermore, fresh experimental evidence with PI3K antagonists in melanoma, glioblastoma, and prostate cancer shows that mitochondrial metabolism drives an elaborate process of tumor adaptation culminating with drug resistance and metastatic competency. This is centered on reprogramming of mitochondrial functions to promote improved cell survival and to fuel the machinery of cell motility and invasion. Key players in these responses are molecular chaperones of the Hsp90 family compartmentalized in mitochondria, which suppress apoptosis via phosphorylation of the pore component, Cyclophilin D, and enable the subcellular repositioning of active mitochondria to membrane protrusions implicated in cell motility. An inhibitor of mitochondrial Hsp90s in preclinical development (gamitrinib) prevents adaptive mitochondrial reprogramming and shows potent antitumor activity in vitro and in vivo. Other therapeutic strategies to target mitochondria for cancer therapy include small-molecule inhibitors of mutant isocitrate dehydrogenase (IDH) IDH1 (AG-120) and IDH2 (AG-221), which opened new therapeutic prospects for patients with high-risk acute myelogenous leukemia (AML). A second approach of mitochondrial therapeutics focuses on agents that elevate toxic ROS levels from a leaky electron transport chain; nevertheless, the clinical experience with these compounds, including a quinone derivative, ARQ 501, and a copper chelator, elesclomol (STA-4783) is limited. In light of this evidence, we discuss how best to target a resurgence of mitochondrial bioenergetics for cancer therapy.
目前正在临床试验中的磷酸肌醇3激酶(PI3K)、Akt和mTOR信号通路的小分子抑制剂,会反常地重新激活它们原本想要抑制的信号通路。此外,在黑色素瘤、胶质母细胞瘤和前列腺癌中使用PI3K拮抗剂的最新实验证据表明,线粒体代谢驱动了一个复杂的肿瘤适应过程,最终导致耐药性和转移能力。这一过程的核心是线粒体功能的重新编程,以促进细胞更好地存活,并为细胞运动和侵袭机制提供能量。这些反应中的关键参与者是定位于线粒体中的Hsp90家族分子伴侣,它们通过使孔道成分亲环蛋白D磷酸化来抑制细胞凋亡,并使活性线粒体亚细胞重定位到与细胞运动有关的膜突出部位。一种处于临床前开发阶段的线粒体Hsp90抑制剂(加米替尼)可防止适应性线粒体重编程,并在体外和体内均显示出强大的抗肿瘤活性。其他针对线粒体进行癌症治疗的策略包括突变型异柠檬酸脱氢酶(IDH)IDH1(AG-120)和IDH2(AG-221)的小分子抑制剂,它们为高危急性髓性白血病(AML)患者开辟了新的治疗前景。线粒体治疗的第二种方法侧重于通过电子传递链泄漏来提高有毒活性氧水平的药物;然而,包括醌衍生物ARQ 501和铜螯合剂依斯氯铵(STA-4783)在内的这些化合物的临床经验有限。鉴于这些证据,我们讨论了如何最好地针对线粒体生物能量学复苏进行癌症治疗。