Suppr超能文献

对蛋白质结构预测技术关键评估(CASP11)和蛋白质结构精修竞赛(ROLL)中自由建模目标的评估。

Evaluation of free modeling targets in CASP11 and ROLL.

作者信息

Kinch Lisa N, Li Wenlin, Monastyrskyy Bohdan, Kryshtafovych Andriy, Grishin Nick V

机构信息

Howard Hughes Medical Institute, University of Texas Southwestern Medical Center at Dallas, 6001 Forest Park Road, Dallas, Texas 75390-9050.

Department of Biophysics and Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, 6001 Forest Park Road, Dallas, Texas 75390-9050.

出版信息

Proteins. 2016 Sep;84 Suppl 1(Suppl 1):51-66. doi: 10.1002/prot.24973. Epub 2016 Jan 20.

Abstract

We present an assessment of 'template-free modeling' (FM) in CASP11and ROLL. Community-wide server performance suggested the use of automated scores similar to previous CASPs would provide a good system of evaluating performance, even in the absence of comprehensive manual assessment. The CASP11 FM category included several outstanding examples, including successful prediction by the Baker group of a 256-residue target (T0806-D1) that lacked sequence similarity to any existing template. The top server model prediction by Zhang's Quark, which was apparently selected and refined by several manual groups, encompassed the entire fold of target T0837-D1. Methods from the same two groups tended to dominate overall CASP11 FM and ROLL rankings. Comparison of top FM predictions with those from the previous CASP experiment revealed progress in the category, particularly reflected in high prediction accuracy for larger protein domains. FM prediction models for two cases were sufficient to provide functional insights that were otherwise not obtainable by traditional sequence analysis methods. Importantly, CASP11 abstracts revealed that alignment-based contact prediction methods brought about much of the CASP11 progress, producing both of the functionally relevant models as well as several of the other outstanding structure predictions. These methodological advances enabled de novo modeling of much larger domain structures than was previously possible and allowed prediction of functional sites. Proteins 2016; 84(Suppl 1):51-66. © 2015 Wiley Periodicals, Inc.

摘要

我们展示了在蛋白质结构预测技术关键评估第11轮(CASP11)和蛋白质结构预测技术开放实验室(ROLL)中对“无模板建模”(FM)的评估。全社区范围内的服务器性能表明,使用与之前的蛋白质结构预测技术关键评估类似的自动化评分将提供一个良好的性能评估系统,即使在没有全面人工评估的情况下也是如此。CASP11的FM类别包含几个出色的例子,包括贝克团队成功预测了一个与任何现有模板均无序列相似性的256个残基的目标(T0806-D1)。张的夸克程序预测的顶级服务器模型,显然被几个手动评估小组选中并优化,涵盖了目标T0837-D1的整个折叠结构。来自这两个小组的方法在总体CASP11的FM和ROLL排名中往往占据主导地位。将FM的顶级预测与之前的蛋白质结构预测技术关键评估实验的预测进行比较,结果显示该类别取得了进展,尤其体现在对更大蛋白质结构域的高预测准确性上。两个案例的FM预测模型足以提供通过传统序列分析方法无法获得的功能见解。重要的是,CASP11的摘要显示,基于比对的接触预测方法推动了CASP11的大部分进展,产生了两个功能相关模型以及其他几个出色的结构预测。这些方法学上的进步使得比以前更大的结构域结构的从头建模成为可能,并能够预测功能位点。《蛋白质》2016年;84(增刊1):51 - 66。©2015威利期刊公司。

相似文献

1
Evaluation of free modeling targets in CASP11 and ROLL.
Proteins. 2016 Sep;84 Suppl 1(Suppl 1):51-66. doi: 10.1002/prot.24973. Epub 2016 Jan 20.
2
Integration of QUARK and I-TASSER for Ab Initio Protein Structure Prediction in CASP11.
Proteins. 2016 Sep;84 Suppl 1(Suppl 1):76-86. doi: 10.1002/prot.24930. Epub 2015 Sep 23.
3
CASP 11 target classification.
Proteins. 2016 Sep;84 Suppl 1(Suppl 1):20-33. doi: 10.1002/prot.24982. Epub 2016 Jan 27.
4
Assessment of template-based modeling of protein structure in CASP11.
Proteins. 2016 Sep;84 Suppl 1(Suppl 1):200-20. doi: 10.1002/prot.25049. Epub 2016 Jun 15.
5
Some of the most interesting CASP11 targets through the eyes of their authors.
Proteins. 2016 Sep;84 Suppl 1(Suppl Suppl 1):34-50. doi: 10.1002/prot.24942. Epub 2015 Nov 16.
6
New encouraging developments in contact prediction: Assessment of the CASP11 results.
Proteins. 2016 Sep;84 Suppl 1(Suppl 1):131-44. doi: 10.1002/prot.24943. Epub 2015 Nov 17.
7
Analysis of free modeling predictions by RBO aleph in CASP11.
Proteins. 2016 Sep;84 Suppl 1(Suppl 1):87-104. doi: 10.1002/prot.24950. Epub 2015 Nov 26.
8
Template based protein structure modeling by global optimization in CASP11.
Proteins. 2016 Sep;84 Suppl 1:221-32. doi: 10.1002/prot.24917. Epub 2015 Sep 14.
9
Assessment of CASP11 contact-assisted predictions.
Proteins. 2016 Sep;84 Suppl 1(Suppl 1):164-80. doi: 10.1002/prot.25020. Epub 2016 Mar 9.
10
Template-based protein structure prediction in CASP11 and retrospect of I-TASSER in the last decade.
Proteins. 2016 Sep;84 Suppl 1(Suppl 1):233-46. doi: 10.1002/prot.24918. Epub 2015 Sep 18.

引用本文的文献

1
Fast and accurate Ab Initio Protein structure prediction using deep learning potentials.
PLoS Comput Biol. 2022 Sep 16;18(9):e1010539. doi: 10.1371/journal.pcbi.1010539. eCollection 2022 Sep.
2
VH Structural Modelling Approaches: A Critical Review.
Int J Mol Sci. 2022 Mar 28;23(7):3721. doi: 10.3390/ijms23073721.
6
Automated and optimally FRET-assisted structural modeling.
Nat Commun. 2020 Oct 26;11(1):5394. doi: 10.1038/s41467-020-19023-1.
8
9
Deep-learning contact-map guided protein structure prediction in CASP13.
Proteins. 2019 Dec;87(12):1149-1164. doi: 10.1002/prot.25792. Epub 2019 Aug 14.
10
ResPRE: high-accuracy protein contact prediction by coupling precision matrix with deep residual neural networks.
Bioinformatics. 2019 Nov 1;35(22):4647-4655. doi: 10.1093/bioinformatics/btz291.

本文引用的文献

1
ECOD: an evolutionary classification of protein domains.
PLoS Comput Biol. 2014 Dec 4;10(12):e1003926. doi: 10.1371/journal.pcbi.1003926. eCollection 2014 Dec.
2
Assessment of template-free modeling in CASP10 and ROLL.
Proteins. 2014 Feb;82 Suppl 2(Suppl 2):57-83. doi: 10.1002/prot.24470. Epub 2013 Dec 17.
3
Definition and classification of evaluation units for CASP10.
Proteins. 2014 Feb;82 Suppl 2(0 2):14-25. doi: 10.1002/prot.24434. Epub 2013 Nov 22.
4
CASP prediction center infrastructure and evaluation measures in CASP10 and CASP ROLL.
Proteins. 2014 Feb;82 Suppl 2(0 2):7-13. doi: 10.1002/prot.24399. Epub 2013 Oct 18.
5
lDDT: a local superposition-free score for comparing protein structures and models using distance difference tests.
Bioinformatics. 2013 Nov 1;29(21):2722-8. doi: 10.1093/bioinformatics/btt473. Epub 2013 Aug 27.
6
Assessment of CASP10 contact-assisted predictions.
Proteins. 2014 Feb;82 Suppl 2(Suppl 2):84-97. doi: 10.1002/prot.24367. Epub 2013 Oct 17.
8
Assessment of template based protein structure predictions in CASP9.
Proteins. 2011;79 Suppl 10:37-58. doi: 10.1002/prot.23177. Epub 2011 Oct 15.
9
CASP9 target classification.
Proteins. 2011;79 Suppl 10(Suppl 10):21-36. doi: 10.1002/prot.23190. Epub 2011 Oct 14.
10
CASP9 assessment of free modeling target predictions.
Proteins. 2011;79 Suppl 10(Suppl 10):59-73. doi: 10.1002/prot.23181. Epub 2011 Oct 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验