Suppr超能文献

天然免疫受体RIG-I对加帽RNA中m7G识别和2'-O-甲基区分的结构基础。

Structural basis for m7G recognition and 2'-O-methyl discrimination in capped RNAs by the innate immune receptor RIG-I.

作者信息

Devarkar Swapnil C, Wang Chen, Miller Matthew T, Ramanathan Anand, Jiang Fuguo, Khan Abdul G, Patel Smita S, Marcotrigiano Joseph

机构信息

Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854;

Center for Advanced Biotechnology and Medicine, Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854.

出版信息

Proc Natl Acad Sci U S A. 2016 Jan 19;113(3):596-601. doi: 10.1073/pnas.1515152113. Epub 2016 Jan 5.

Abstract

RNAs with 5'-triphosphate (ppp) are detected in the cytoplasm principally by the innate immune receptor Retinoic Acid Inducible Gene-I (RIG-I), whose activation triggers a Type I IFN response. It is thought that self RNAs like mRNAs are not recognized by RIG-I because 5'ppp is capped by the addition of a 7-methyl guanosine (m7G) (Cap-0) and a 2'-O-methyl (2'-OMe) group to the 5'-end nucleotide ribose (Cap-1). Here we provide structural and mechanistic basis for exact roles of capping and 2'-O-methylation in evading RIG-I recognition. Surprisingly, Cap-0 and 5'ppp double-stranded (ds) RNAs bind to RIG-I with nearly identical Kd values and activate RIG-I's ATPase and cellular signaling response to similar extents. On the other hand, Cap-0 and 5'ppp single-stranded RNAs did not bind RIG-I and are signaling inactive. Three crystal structures of RIG-I complexes with dsRNAs bearing 5'OH, 5'ppp, and Cap-0 show that RIG-I can accommodate the m7G cap in a cavity created through conformational changes in the helicase-motif IVa without perturbing the ppp interactions. In contrast, Cap-1 modifications abrogate RIG-I signaling through a mechanism involving the H830 residue, which we show is crucial for discriminating between Cap-0 and Cap-1 RNAs. Furthermore, m7G capping works synergistically with 2'-O-methylation to weaken RNA affinity by 200-fold and lower ATPase activity. Interestingly, a single H830A mutation restores both high-affinity binding and signaling activity with 2'-O-methylated dsRNAs. Our work provides new structural insights into the mechanisms of host and viral immune evasion from RIG-I, explaining the complexity of cap structures over evolution.

摘要

在细胞质中,5'-三磷酸(ppp)RNA主要由天然免疫受体视黄酸诱导基因I(RIG-I)检测到,其激活会触发I型干扰素反应。人们认为,像mRNA这样的自身RNA不会被RIG-I识别,因为5'ppp通过在5'-末端核苷酸核糖上添加7-甲基鸟苷(m7G)(Cap-0)和2'-O-甲基(2'-OMe)基团而被加帽(Cap-1)。在这里,我们提供了加帽和2'-O-甲基化在逃避RIG-I识别中的确切作用的结构和机制基础。令人惊讶的是,Cap-0和5'ppp双链(ds)RNA以几乎相同的解离常数(Kd)值与RIG-I结合,并在相似程度上激活RIG-I的ATP酶和细胞信号反应。另一方面,Cap-0和5'ppp单链RNA不与RIG-I结合且无信号活性。RIG-I与带有5'OH、5'ppp和Cap-0的dsRNA复合物的三个晶体结构表明,RIG-I可以在通过解旋酶基序IVa的构象变化形成的腔内容纳m7G帽,而不会干扰ppp相互作用。相比之下,Cap-1修饰通过涉及H830残基的机制消除RIG-I信号,我们表明该残基对于区分Cap-0和Cap-1 RNA至关重要。此外,m7G加帽与2'-O-甲基化协同作用,使RNA亲和力降低200倍并降低ATP酶活性。有趣的是,单个H830A突变恢复了与2'-O-甲基化dsRNA的高亲和力结合和信号活性。我们的工作为宿主和病毒逃避RIG-I免疫的机制提供了新的结构见解,解释了帽结构在进化过程中的复杂性。

相似文献

1
Structural basis for m7G recognition and 2'-O-methyl discrimination in capped RNAs by the innate immune receptor RIG-I.
Proc Natl Acad Sci U S A. 2016 Jan 19;113(3):596-601. doi: 10.1073/pnas.1515152113. Epub 2016 Jan 5.
3
RIG-I recognizes metabolite-capped RNAs as signaling ligands.
Nucleic Acids Res. 2023 Aug 25;51(15):8102-8114. doi: 10.1093/nar/gkad518.
4
RIG-I Uses an ATPase-Powered Translocation-Throttling Mechanism for Kinetic Proofreading of RNAs and Oligomerization.
Mol Cell. 2018 Oct 18;72(2):355-368.e4. doi: 10.1016/j.molcel.2018.08.021. Epub 2018 Sep 27.
6
Structural basis of RNA recognition and activation by innate immune receptor RIG-I.
Nature. 2011 Sep 25;479(7373):423-7. doi: 10.1038/nature10537.
7
The autoinhibitory CARD2-Hel2i Interface of RIG-I governs RNA selection.
Nucleic Acids Res. 2016 Jan 29;44(2):896-909. doi: 10.1093/nar/gkv1299. Epub 2015 Nov 26.
9
A Conserved Histidine in the RNA Sensor RIG-I Controls Immune Tolerance to N1-2'O-Methylated Self RNA.
Immunity. 2015 Jul 21;43(1):41-51. doi: 10.1016/j.immuni.2015.06.015. Epub 2015 Jul 14.

引用本文的文献

1
Molecular Mechanisms of Innate Immune Sensing of Exogenous RNAs.
Methods Mol Biol. 2025;2965:39-56. doi: 10.1007/978-1-0716-4742-4_2.
2
Decrypting the Immune Symphony for RNA Vaccines.
Vaccines (Basel). 2025 Aug 20;13(8):882. doi: 10.3390/vaccines13080882.
3
Viral and nonviral nanocarriers for CRISPR-based gene editing.
Nano Res. 2024 Oct;17(10):8904-8925. doi: 10.1007/s12274-024-6748-5. Epub 2024 Jun 20.
4
Terminal Loop Sequences in Viral Double-Stranded RNAs Modulate RIG-I Signaling.
bioRxiv. 2025 Aug 2:2025.08.02.668285. doi: 10.1101/2025.08.02.668285.
5
mRNA medicine: Recent progresses in chemical modification, design, and engineering.
Nano Res. 2024 Oct;17(10):9015-9030. doi: 10.1007/s12274-024-6978-6. Epub 2024 Sep 3.
6
RNA chemistry and therapeutics.
Nat Rev Drug Discov. 2025 Jul 14. doi: 10.1038/s41573-025-01237-x.
8
Pattern recognition receptors and inflammasome: Now and beyond.
Mol Cells. 2025 Aug;48(8):100239. doi: 10.1016/j.mocell.2025.100239. Epub 2025 Jun 15.
9
A flexible, high-throughput system for studying live mRNA translation with HiBiT technology.
Nucleic Acids Res. 2025 Jun 6;53(11). doi: 10.1093/nar/gkaf496.
10
Physicochemical and functional assessment of messenger RNA 5'Cap-end impurities under forced degradation conditions.
Mol Ther Nucleic Acids. 2025 May 20;36(2):102570. doi: 10.1016/j.omtn.2025.102570. eCollection 2025 Jun 10.

本文引用的文献

1
The autoinhibitory CARD2-Hel2i Interface of RIG-I governs RNA selection.
Nucleic Acids Res. 2016 Jan 29;44(2):896-909. doi: 10.1093/nar/gkv1299. Epub 2015 Nov 26.
2
A Conserved Histidine in the RNA Sensor RIG-I Controls Immune Tolerance to N1-2'O-Methylated Self RNA.
Immunity. 2015 Jul 21;43(1):41-51. doi: 10.1016/j.immuni.2015.06.015. Epub 2015 Jul 14.
3
Innate immune restriction and antagonism of viral RNA lacking 2׳-O methylation.
Virology. 2015 May;479-480:66-74. doi: 10.1016/j.virol.2015.01.019. Epub 2015 Feb 11.
4
Defining the functional determinants for RNA surveillance by RIG-I.
EMBO Rep. 2013 Sep;14(9):772-9. doi: 10.1038/embor.2013.108. Epub 2013 Jul 30.
5
Structural basis for viral 5'-PPP-RNA recognition by human IFIT proteins.
Nature. 2013 Feb 7;494(7435):60-4. doi: 10.1038/nature11783. Epub 2013 Jan 13.
6
Structural basis for dsRNA recognition, filament formation, and antiviral signal activation by MDA5.
Cell. 2013 Jan 17;152(1-2):276-89. doi: 10.1016/j.cell.2012.11.048. Epub 2012 Dec 27.
7
A structure-based model of RIG-I activation.
RNA. 2012 Dec;18(12):2118-27. doi: 10.1261/rna.035949.112. Epub 2012 Nov 1.
8
Visualizing the determinants of viral RNA recognition by innate immune sensor RIG-I.
Structure. 2012 Nov 7;20(11):1983-8. doi: 10.1016/j.str.2012.08.029. Epub 2012 Sep 27.
9
Crystal structure of IFIT2 (ISG54) predicts functional properties of IFITs.
Cell Res. 2012 Oct;22(10):1407-9. doi: 10.1038/cr.2012.130. Epub 2012 Sep 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验