Suppr超能文献

具核梭杆菌与结直肠癌免疫及分子改变的关联

Association of Fusobacterium nucleatum with immunity and molecular alterations in colorectal cancer.

作者信息

Nosho Katsuhiko, Sukawa Yasutaka, Adachi Yasushi, Ito Miki, Mitsuhashi Kei, Kurihara Hiroyoshi, Kanno Shinichi, Yamamoto Itaru, Ishigami Keisuke, Igarashi Hisayoshi, Maruyama Reo, Imai Kohzoh, Yamamoto Hiroyuki, Shinomura Yasuhisa

机构信息

Katsuhiko Nosho, Yasutaka Sukawa, Yasushi Adachi, Miki Ito, Kei Mitsuhashi, Hiroyoshi Kurihara, Shinichi Kanno, Itaru Yamamoto, Keisuke Ishigami, Hisayoshi Igarashi, Yasuhisa Shinomura, Department of Gastroenterology, Rheumatology and Clinical Immunology, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan.

出版信息

World J Gastroenterol. 2016 Jan 14;22(2):557-66. doi: 10.3748/wjg.v22.i2.557.

Abstract

The human intestinal microbiome plays a major role in human health and diseases, including colorectal cancer. Colorectal carcinogenesis represents a heterogeneous process with a differing set of somatic molecular alterations, influenced by diet, environmental and microbial exposures, and host immunity. Fusobacterium species are part of the human oral and intestinal microbiota. Metagenomic analyses have shown an enrichment of Fusobacterium nucleatum (F. nucleatum) in colorectal carcinoma tissue. Using 511 colorectal carcinomas from Japanese patients, we assessed the presence of F. nucleatum. Our results showed that the frequency of F. nucleatum positivity in the Japanese colorectal cancer was 8.6% (44/511), which was lower than that in United States cohort studies (13%). Similar to the United States studies, F. nucleatum positivity in Japanese colorectal cancers was significantly associated with microsatellite instability (MSI)-high status. Regarding the immune response in colorectal cancer, high levels of infiltrating T-cell subsets (i.e., CD3+, CD8+, CD45RO+, and FOXP3+ cells) have been associated with better patient prognosis. There is also evidence to indicate that molecular features of colorectal cancer, especially MSI, influence T-cell-mediated adaptive immunity. Concerning the association between the gut microbiome and immunity, F. nucleatum has been shown to expand myeloid-derived immune cells, which inhibit T-cell proliferation and induce T-cell apoptosis in colorectal cancer. This finding indicates that F. nucleatum possesses immunosuppressive activities by inhibiting human T-cell responses. Certain microRNAs are induced during the macrophage inflammatory response and have the ability to regulate host-cell responses to pathogens. MicroRNA-21 increases the levels of IL-10 and prostaglandin E2, which suppress antitumor T-cell-mediated adaptive immunity through the inhibition of the antigen-presenting capacities of dendritic cells and T-cell proliferation in colorectal cancer cells. Thus, emerging evidence may provide insights for strategies to target microbiota, immune cells and tumor molecular alterations for colorectal cancer prevention and treatment. Further investigation is needed to clarify the association of Fusobacterium with T-cells and microRNA expressions in colorectal cancer.

摘要

人类肠道微生物群在人类健康和疾病(包括结直肠癌)中起着重要作用。结直肠癌发生是一个异质性过程,伴有一系列不同的体细胞分子改变,受饮食、环境和微生物暴露以及宿主免疫影响。梭杆菌属是人类口腔和肠道微生物群的一部分。宏基因组分析显示,具核梭杆菌(F. nucleatum)在结直肠癌组织中富集。我们使用来自日本患者的511例结直肠癌病例,评估了具核梭杆菌的存在情况。我们的结果显示,日本结直肠癌中具核梭杆菌阳性率为8.6%(44/511),低于美国队列研究中的比例(13%)。与美国的研究相似,日本结直肠癌中具核梭杆菌阳性与微卫星高度不稳定(MSI)状态显著相关。关于结直肠癌中的免疫反应,高水平浸润性T细胞亚群(即CD3 +、CD8 +、CD45RO +和FOXP3 +细胞)与患者较好的预后相关。也有证据表明,结直肠癌的分子特征,尤其是MSI,会影响T细胞介导的适应性免疫。关于肠道微生物群与免疫之间的关联,已表明具核梭杆菌可扩增髓系来源的免疫细胞,这些细胞在结直肠癌中抑制T细胞增殖并诱导T细胞凋亡。这一发现表明,具核梭杆菌通过抑制人类T细胞反应而具有免疫抑制活性。某些微小RNA在巨噬细胞炎症反应期间被诱导产生,并具有调节宿主细胞对病原体反应的能力。微小RNA - 21可增加白细胞介素 - 10和前列腺素E2的水平,它们通过抑制树突状细胞的抗原呈递能力和结直肠癌细胞中的T细胞增殖来抑制抗肿瘤T细胞介导的适应性免疫。因此,新出现的证据可能为针对微生物群、免疫细胞和肿瘤分子改变的结直肠癌预防和治疗策略提供思路。需要进一步研究以阐明梭杆菌与结直肠癌中T细胞及微小RNA表达之间的关联。

相似文献

1
Association of Fusobacterium nucleatum with immunity and molecular alterations in colorectal cancer.
World J Gastroenterol. 2016 Jan 14;22(2):557-66. doi: 10.3748/wjg.v22.i2.557.
2
Fusobacterium nucleatum and T Cells in Colorectal Carcinoma.
JAMA Oncol. 2015 Aug;1(5):653-61. doi: 10.1001/jamaoncol.2015.1377.
3
Association of with Specific T-cell Subsets in the Colorectal Carcinoma Microenvironment.
Clin Cancer Res. 2021 May 15;27(10):2816-2826. doi: 10.1158/1078-0432.CCR-20-4009. Epub 2021 Feb 25.
4
Association of Fusobacterium nucleatum with clinical and molecular features in colorectal serrated pathway.
Int J Cancer. 2015 Sep 15;137(6):1258-68. doi: 10.1002/ijc.29488. Epub 2015 Mar 13.
6
Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis.
Gut. 2016 Dec;65(12):1973-1980. doi: 10.1136/gutjnl-2015-310101. Epub 2015 Aug 26.
7
in Colorectal Cancer Relates to Immune Response Differentially by Tumor Microsatellite Instability Status.
Cancer Immunol Res. 2018 Nov;6(11):1327-1336. doi: 10.1158/2326-6066.CIR-18-0174. Epub 2018 Sep 18.
8
Association Between Fusobacterium nucleatum, Pathway Mutation, and Patient Prognosis in Colorectal Cancer.
Ann Surg Oncol. 2018 Oct;25(11):3389-3395. doi: 10.1245/s10434-018-6681-5. Epub 2018 Jul 30.
9
's link to colorectal neoplasia sequenced: A systematic review and future insights.
World J Gastroenterol. 2017 Dec 28;23(48):8626-8650. doi: 10.3748/wjg.v23.i48.8626.
10
Fusobacterium nucleatum: an emerging bug in colorectal tumorigenesis.
Eur J Cancer Prev. 2015 Sep;24(5):373-85. doi: 10.1097/CEJ.0000000000000116.

引用本文的文献

1
From dysbiosis to precision therapy: decoding the gut-bladder axis in bladder carcinogenesis.
Front Oncol. 2025 Jul 10;15:1630726. doi: 10.3389/fonc.2025.1630726. eCollection 2025.
3
Enrichment in Colorectal Tumor Tissue: Associations With Tumor Characteristics and Survival Outcomes.
Gastro Hep Adv. 2025 Feb 20;4(6):100644. doi: 10.1016/j.gastha.2025.100644. eCollection 2025.
4
Nervous system-gut microbiota-immune system axis: future directions for preventing tumor.
Front Immunol. 2025 May 1;16:1535955. doi: 10.3389/fimmu.2025.1535955. eCollection 2025.
5
Highly Sensitive DNA Testing of Fusobacterium nucleatum in Colorectal Tumors.
Cancer Epidemiol Biomarkers Prev. 2025 Aug 1;34(8):1377-1385. doi: 10.1158/1055-9965.EPI-24-1020.
7
Exploring the role of gut microbiota in colorectal liver metastasis through the gut-liver axis.
Front Cell Dev Biol. 2025 Mar 13;13:1563184. doi: 10.3389/fcell.2025.1563184. eCollection 2025.
8
Characterization of Salivary Microbiota in Japanese Patients with Oral Cancer.
Int J Mol Sci. 2025 Mar 6;26(5):2339. doi: 10.3390/ijms26052339.

本文引用的文献

1
Fusobacterium nucleatum and T Cells in Colorectal Carcinoma.
JAMA Oncol. 2015 Aug;1(5):653-61. doi: 10.1001/jamaoncol.2015.1377.
4
Clinicopathological and molecular characteristics of serrated lesions in Japanese elderly patients.
Digestion. 2015;91(1):57-63. doi: 10.1159/000368820. Epub 2015 Jan 20.
5
Molecular and genetic properties of tumors associated with local immune cytolytic activity.
Cell. 2015 Jan 15;160(1-2):48-61. doi: 10.1016/j.cell.2014.12.033.
6
Association of MicroRNA-31-5p with Clinical Efficacy of Anti-EGFR Therapy in Patients with Metastatic Colorectal Cancer.
Ann Surg Oncol. 2015 Aug;22(8):2640-8. doi: 10.1245/s10434-014-4264-7. Epub 2014 Dec 4.
7
PD-1 blockade induces responses by inhibiting adaptive immune resistance.
Nature. 2014 Nov 27;515(7528):568-71. doi: 10.1038/nature13954.
8
Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients.
Nature. 2014 Nov 27;515(7528):563-7. doi: 10.1038/nature14011.
9
MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer.
Nature. 2014 Nov 27;515(7528):558-62. doi: 10.1038/nature13904.
10
Genetic basis for clinical response to CTLA-4 blockade in melanoma.
N Engl J Med. 2014 Dec 4;371(23):2189-2199. doi: 10.1056/NEJMoa1406498. Epub 2014 Nov 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验