Suppr超能文献

癌症中n-乙酰天门冬氨酸水平升高的作用。

Role of Increased n-acetylaspartate Levels in Cancer.

作者信息

Zand Behrouz, Previs Rebecca A, Zacharias Niki M, Rupaimoole Rajesha, Mitamura Takashi, Nagaraja Archana Sidalaghatta, Guindani Michele, Dalton Heather J, Yang Lifeng, Baddour Joelle, Achreja Abhinav, Hu Wei, Pecot Chad V, Ivan Cristina, Wu Sherry Y, McCullough Christopher R, Gharpure Kshipra M, Shoshan Einav, Pradeep Sunila, Mangala Lingegowda S, Rodriguez-Aguayo Cristian, Wang Ying, Nick Alpa M, Davies Michael A, Armaiz-Pena Guillermo, Liu Jinsong, Lutgendorf Susan K, Baggerly Keith A, Eli Menashe Bar, Lopez-Berestein Gabriel, Nagrath Deepak, Bhattacharya Pratip K, Sood Anil K

机构信息

Departments of Gynecologic Oncology and Reproductive Medicine (BZ, RAP, RR, TM, ASN, HJD, WH, CI, SYW, KMG, SP, LSM, AMN, GAP, AKS), Cancer Systems Imaging (NMZ, CRM, PKB), Biostatistics (MG), Cancer Medicine (CVP), Center for RNA Interference and Non-Coding RNA (CI, LSM, CRA, GLB, AKS), Cancer Biology (YS, MBE, GLB, AKS), Experimental Therapeutics (CRA, GLB), Bioinformatics and Computational Biology (YW, KAB), Melanoma Medical Oncology (MAD), and Pathology (JL), University of Texas M. D. Anderson Cancer Center, Houston, TX; Department of Nanomedicine and Bioengineering, UT Health, Houston, TX (GLB, AKS); Departments of Psychology, Urology, and Obstetrics and Gynecology, the University of Iowa, Iowa City, IA (SKL); Laboratory for Systems Biology of Human Diseases (LY, JB, AA, DN), Department of Chemical and Biomolecular Engineering (LY, JB, AA, DN), and Department of Bioengineering (DN), Rice University, Houston, TX.

出版信息

J Natl Cancer Inst. 2016 Jan 26;108(6):djv426. doi: 10.1093/jnci/djv426.

Abstract

BACKGROUND

The clinical and biological effects of metabolic alterations in cancer are not fully understood.

METHODS

In high-grade serous ovarian cancer (HGSOC) samples (n = 101), over 170 metabolites were profiled and compared with normal ovarian tissues (n = 15). To determine NAT8L gene expression across different cancer types, we analyzed the RNA expression of cancer types using RNASeqV2 data available from the open access The Cancer Genome Atlas (TCGA) website (http://www.cbioportal.org/public-portal/). Using NAT8L siRNA, molecular techniques and histological analysis, we determined cancer cell viability, proliferation, apoptosis, and tumor growth in in vitro and in vivo (n = 6-10 mice/group) settings. Data were analyzed with the Student's t test and Kaplan-Meier analysis. Statistical tests were two-sided.

RESULTS

Patients with high levels of tumoral NAA and its biosynthetic enzyme, aspartate N-acetyltransferase (NAT8L), had worse overall survival than patients with low levels of NAA and NAT8L. The overall survival duration of patients with higher-than-median NAA levels (3.6 years) was lower than that of patients with lower-than-median NAA levels (5.1 years, P = .03). High NAT8L gene expression in other cancers (melanoma, renal cell, breast, colon, and uterine cancers) was associated with worse overall survival. NAT8L silencing reduced cancer cell viability (HEYA8: control siRNA 90.61% ± 2.53, NAT8L siRNA 39.43% ± 3.00, P < .001; A2780: control siRNA 90.59% ± 2.53, NAT8L siRNA 7.44% ± 1.71, P < .001) and proliferation (HEYA8: control siRNA 74.83% ± 0.92, NAT8L siRNA 55.70% ± 1.54, P < .001; A2780: control siRNA 50.17% ± 4.13, NAT8L siRNA 26.52% ± 3.70, P < .001), which was rescued by addition of NAA. In orthotopic mouse models (ovarian cancer and melanoma), NAT8L silencing reduced tumor growth statistically significantly (A2780: control siRNA 0.52 g ± 0.15, NAT8L siRNA 0.08 g ± 0.17, P < .001; HEYA8: control siRNA 0.79 g ± 0.42, NAT8L siRNA 0.24 g ± 0.18, P = .008, A375-SM: control siRNA 0.55 g ± 0.22, NAT8L siRNA 0.21 g ± 0.17 g, P = .001). NAT8L silencing downregulated the anti-apoptotic pathway, which was mediated through FOXM1.

CONCLUSION

These findings indicate that the NAA pathway has a prominent role in promoting tumor growth and represents a valuable target for anticancer therapy.Altered energy metabolism is a hallmark of cancer (1). Proliferating cancer cells have much greater metabolic requirements than nonproliferating differentiated cells (2,3). Moreover, altered cancer metabolism elevates unique metabolic intermediates, which can promote cancer survival and progression (4,5). Furthermore, emerging evidence suggests that proliferating cancer cells exploit alternative metabolic pathways to meet their high demand for energy and to accumulate biomass (6-8).

摘要

背景

癌症中代谢改变的临床和生物学效应尚未完全明确。

方法

在高级别浆液性卵巢癌(HGSOC)样本(n = 101)中,对170多种代谢物进行了分析,并与正常卵巢组织(n = 15)进行比较。为了确定NAT8L基因在不同癌症类型中的表达情况,我们使用可从开放获取的癌症基因组图谱(TCGA)网站(http://www.cbioportal.org/public-portal/)获取的RNASeqV2数据,分析了多种癌症类型的RNA表达。使用NAT8L小干扰RNA(siRNA)、分子技术和组织学分析,我们在体外和体内(每组n = 6 - 10只小鼠)环境中确定了癌细胞的活力、增殖、凋亡和肿瘤生长情况。数据采用学生t检验和Kaplan - Meier分析进行分析。统计检验为双侧检验。

结果

肿瘤N - 乙酰天门冬氨酸(NAA)及其生物合成酶天冬氨酸N - 乙酰转移酶(NAT8L)水平高的患者总生存期比NAA和NAT8L水平低的患者更差。NAA水平高于中位数的患者总生存时间(3.6年)低于NAA水平低于中位数的患者(5.1年,P = 0.03)。其他癌症(黑色素瘤、肾细胞癌、乳腺癌、结肠癌和子宫癌)中NAT8L基因的高表达与较差的总生存期相关。NAT8L基因沉默降低了癌细胞的活力(HEYA8细胞系:对照siRNA为90.61% ± 2.53,NAT8L siRNA为39.43% ± 3.00,P < 0.001;A2780细胞系:对照siRNA为90.59% ± 2.53,NAT8L siRNA为7.44% ± 1.71,P < 0.001)和增殖能力(HEYA8细胞系:对照siRNA为74.83% ± 0.92,NAT8L siRNA为55.70% ± 1.54,P < 0.001;A2780细胞系:对照siRNA为50.17% ± 4.13,NAT8L siRNA为26.52% ± 3.70,P < 0.001),添加NAA后可恢复。在原位小鼠模型(卵巢癌和黑色素瘤)中,NAT8L基因沉默显著降低了肿瘤生长(A2780细胞系:对照siRNA为0.52 g ± 0.15,NAT8L siRNA为0.08 g ± 0.17,P < 0.001;HEYA8细胞系:对照siRNA为0.79 g ± 0.42,NAT8L siRNA为0.24 g ± 0.18,P = 0.008;A375 - SM细胞系:对照siRNA为0.55 g ± 0.22,NAT8L siRNA为0.21 g ± 0.17 g,P = 0.001)。NAT8L基因沉默下调了抗凋亡途径,该途径由叉头框蛋白M1(FOXM1)介导。

结论

这些发现表明NAA途径在促进肿瘤生长中起重要作用,是抗癌治疗的一个有价值的靶点。能量代谢改变是癌症的一个标志(1)。增殖的癌细胞比非增殖的分化细胞有更高的代谢需求(2,3)。此外,癌症代谢改变会产生独特的代谢中间产物,可促进癌症的生存和进展(4,5)。此外,新出现的证据表明,增殖的癌细胞利用替代代谢途径来满足其对能量的高需求并积累生物量(6 - 8)。

相似文献

1
Role of Increased n-acetylaspartate Levels in Cancer.
J Natl Cancer Inst. 2016 Jan 26;108(6):djv426. doi: 10.1093/jnci/djv426.
2
Cancer-Specific Production of N-Acetylaspartate via NAT8L Overexpression in Non-Small Cell Lung Cancer and Its Potential as a Circulating Biomarker.
Cancer Prev Res (Phila). 2016 Jan;9(1):43-52. doi: 10.1158/1940-6207.CAPR-14-0287. Epub 2015 Oct 28.
3
-acetylaspartate availability is essential for juvenile survival on fat-free diet and determines metabolic health.
FASEB J. 2019 Dec;33(12):13808-13824. doi: 10.1096/fj.201801323R. Epub 2019 Nov 1.
5
Do reductions in brain N-acetylaspartate levels contribute to the etiology of some neuropsychiatric disorders?
J Neurosci Res. 2013 Jul;91(7):934-42. doi: 10.1002/jnr.23234. Epub 2013 Apr 30.
6
Augmentation of response to chemotherapy by microRNA-506 through regulation of RAD51 in serous ovarian cancers.
J Natl Cancer Inst. 2015 May 20;107(7). doi: 10.1093/jnci/djv108. Print 2015 Jul.
7
Effect of interleukin-8 gene silencing with liposome-encapsulated small interfering RNA on ovarian cancer cell growth.
J Natl Cancer Inst. 2008 Mar 5;100(5):359-72. doi: 10.1093/jnci/djn024. Epub 2008 Feb 26.
9
The neuronal metabolite NAA regulates histone H3 methylation in oligodendrocytes and myelin lipid composition.
Exp Brain Res. 2017 Jan;235(1):279-292. doi: 10.1007/s00221-016-4789-z. Epub 2016 Oct 5.
10
Silencing of p130cas in ovarian carcinoma: a novel mechanism for tumor cell death.
J Natl Cancer Inst. 2011 Nov 2;103(21):1596-612. doi: 10.1093/jnci/djr372. Epub 2011 Sep 28.

引用本文的文献

1
Characteristic metabolite profile of 10 colorectal cancer-related bacteria.
Front Oncol. 2025 Jul 14;15:1604876. doi: 10.3389/fonc.2025.1604876. eCollection 2025.
2
The role of macrophage polarization in ovarian cancer: from molecular mechanism to therapeutic potentials.
Front Immunol. 2025 Apr 22;16:1543096. doi: 10.3389/fimmu.2025.1543096. eCollection 2025.
5
A pan-cancer analysis of the oncogenic role of N-acetyltransferase 8 like in human cancer.
Discov Oncol. 2024 Dec 18;15(1):792. doi: 10.1007/s12672-024-01605-w.
8
The prowess of metabolomics in cancer research: current trends, challenges and future perspectives.
Mol Cell Biochem. 2025 Feb;480(2):693-720. doi: 10.1007/s11010-024-05041-w. Epub 2024 May 30.
9
Metabolism of pancreatic neuroendocrine tumors: what can omics tell us?
Front Endocrinol (Lausanne). 2023 Oct 16;14:1248575. doi: 10.3389/fendo.2023.1248575. eCollection 2023.
10
Synergistic interactions of cytarabine-adavosertib in leukemic cell lines proliferation and metabolomic endpoints.
Biomed Pharmacother. 2023 Oct;166:115352. doi: 10.1016/j.biopha.2023.115352. Epub 2023 Aug 24.

本文引用的文献

1
Nitric oxide mediates metabolic coupling of omentum-derived adipose stroma to ovarian and endometrial cancer cells.
Cancer Res. 2015 Jan 15;75(2):456-71. doi: 10.1158/0008-5472.CAN-14-1337. Epub 2014 Nov 25.
2
Nitric oxide is a positive regulator of the Warburg effect in ovarian cancer cells.
Cell Death Dis. 2014 Jun 26;5(6):e1302. doi: 10.1038/cddis.2014.264.
4
Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway.
Nature. 2013 Apr 4;496(7443):101-5. doi: 10.1038/nature12040. Epub 2013 Mar 27.
5
6
(R)-2-hydroxyglutarate is sufficient to promote leukemogenesis and its effects are reversible.
Science. 2013 Mar 29;339(6127):1621-5. doi: 10.1126/science.1231677. Epub 2013 Feb 7.
8
NetWalker: a contextual network analysis tool for functional genomics.
BMC Genomics. 2012 Jun 25;13:282. doi: 10.1186/1471-2164-13-282.
10
Metabolite detection of pancreatic carcinoma by in vivo proton MR spectroscopy at 3T: initial results.
Radiol Med. 2012 Aug;117(5):780-8. doi: 10.1007/s11547-011-0757-7. Epub 2011 Nov 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验