Suppr超能文献

成肌细胞融合所需的成肌素结构域的结构-功能分析

Structure-function analysis of myomaker domains required for myoblast fusion.

作者信息

Millay Douglas P, Gamage Dilani G, Quinn Malgorzata E, Min Yi-Li, Mitani Yasuyuki, Bassel-Duby Rhonda, Olson Eric N

机构信息

Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390; Department of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229

Department of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229.

出版信息

Proc Natl Acad Sci U S A. 2016 Feb 23;113(8):2116-21. doi: 10.1073/pnas.1600101113. Epub 2016 Feb 8.

Abstract

During skeletal muscle development, myoblasts fuse to form multinucleated myofibers. Myomaker [Transmembrane protein 8c (TMEM8c)] is a muscle-specific protein that is essential for myoblast fusion and sufficient to promote fusion of fibroblasts with muscle cells; however, the structure and biochemical properties of this membrane protein have not been explored. Here, we used CRISPR/Cas9 mutagenesis to disrupt myomaker expression in the C2C12 muscle cell line, which resulted in complete blockade to fusion. To define the functional domains of myomaker required to direct fusion, we established a heterologous cell-cell fusion system, in which fibroblasts expressing mutant versions of myomaker were mixed with WT myoblasts. Our data indicate that the majority of myomaker is embedded in the plasma membrane with seven membrane-spanning regions and a required intracellular C-terminal tail. We show that myomaker function is conserved in other mammalian orthologs; however, related family members (TMEM8a and TMEM8b) do not exhibit fusogenic activity. These findings represent an important step toward deciphering the cellular components and mechanisms that control myoblast fusion and muscle formation.

摘要

在骨骼肌发育过程中,成肌细胞融合形成多核肌纤维。成肌生成素[跨膜蛋白8c(TMEM8c)]是一种肌肉特异性蛋白,对成肌细胞融合至关重要,且足以促进成纤维细胞与肌肉细胞的融合;然而,这种膜蛋白的结构和生化特性尚未得到研究。在这里,我们使用CRISPR/Cas9诱变技术破坏C2C12肌肉细胞系中的成肌生成素表达,这导致融合完全受阻。为了确定指导融合所需的成肌生成素功能结构域,我们建立了一个异源细胞-细胞融合系统,其中表达成肌生成素突变体的成纤维细胞与野生型成肌细胞混合。我们的数据表明,大多数成肌生成素嵌入质膜,具有七个跨膜区域和一个必需的细胞内C末端尾巴。我们表明,成肌生成素功能在其他哺乳动物直系同源物中是保守的;然而,相关家族成员(TMEM8a和TMEM8b)不表现出融合活性。这些发现是朝着破译控制成肌细胞融合和肌肉形成的细胞成分及机制迈出的重要一步。

相似文献

1
Structure-function analysis of myomaker domains required for myoblast fusion.
Proc Natl Acad Sci U S A. 2016 Feb 23;113(8):2116-21. doi: 10.1073/pnas.1600101113. Epub 2016 Feb 8.
2
Insights into the localization and function of myomaker during myoblast fusion.
J Biol Chem. 2017 Oct 20;292(42):17272-17289. doi: 10.1074/jbc.M117.811372. Epub 2017 Aug 31.
3
Requirement of the fusogenic micropeptide myomixer for muscle formation in zebrafish.
Proc Natl Acad Sci U S A. 2017 Nov 7;114(45):11950-11955. doi: 10.1073/pnas.1715229114. Epub 2017 Oct 23.
4
Control of muscle formation by the fusogenic micropeptide myomixer.
Science. 2017 Apr 21;356(6335):323-327. doi: 10.1126/science.aam9361. Epub 2017 Apr 6.
5
Myomaker is a membrane activator of myoblast fusion and muscle formation.
Nature. 2013 Jul 18;499(7458):301-5. doi: 10.1038/nature12343.
6
The regulatory role of Myomaker and Myomixer-Myomerger-Minion in muscle development and regeneration.
Cell Mol Life Sci. 2020 Apr;77(8):1551-1569. doi: 10.1007/s00018-019-03341-9. Epub 2019 Oct 23.
8
In vivo myomaker-mediated heterologous fusion and nuclear reprogramming.
FASEB J. 2017 Jan;31(1):400-411. doi: 10.1096/fj.201600945R. Epub 2016 Oct 17.
9
[Molecular regulation mechanism of and in myoblast fusion].
Yi Chuan. 2019 Dec 20;41(12):1110-1118. doi: 10.16288/j.yczz.19-232.
10
Myomaker is required for the fusion of fast-twitch myocytes in the zebrafish embryo.
Dev Biol. 2017 Mar 1;423(1):24-33. doi: 10.1016/j.ydbio.2017.01.019. Epub 2017 Feb 1.

引用本文的文献

2
Novel drug-inducible CRISPRa/i systems for rapid and reversible manipulation of gene transcription.
Cell Mol Life Sci. 2025 Jun 23;82(1):249. doi: 10.1007/s00018-025-05786-7.
3
The miR-6240 target gene Igf2bp3 promotes myoblast fusion by enhancing myomaker mRNA stability.
Cell Mol Biol Lett. 2024 Dec 5;29(1):152. doi: 10.1186/s11658-024-00650-1.
4
The Regulatory Role of in the Muscle Growth of the Chinese Perch ().
Animals (Basel). 2024 Aug 23;14(17):2448. doi: 10.3390/ani14172448.
5
Ectopic expression of Myomaker and Myomixer in slow muscle cells induces slow muscle fusion and myofiber death.
J Genet Genomics. 2024 Nov;51(11):1187-1203. doi: 10.1016/j.jgg.2024.08.006. Epub 2024 Aug 30.
6
Skeletal muscle: molecular structure, myogenesis, biological functions, and diseases.
MedComm (2020). 2024 Jul 10;5(7):e649. doi: 10.1002/mco2.649. eCollection 2024 Jul.
7
Molecular regulation of myocyte fusion.
Curr Top Dev Biol. 2024;158:53-82. doi: 10.1016/bs.ctdb.2024.01.016. Epub 2024 Mar 16.
8
Division-Independent Differentiation of Muscle Stem Cells During a Growth Stimulus.
Stem Cells. 2024 Mar 14;42(3):266-277. doi: 10.1093/stmcls/sxad091.
9
A Frame-by-Frame Glance at Membrane Fusion Mechanisms: From Viral Infections to Fertilization.
Biomolecules. 2023 Jul 14;13(7):1130. doi: 10.3390/biom13071130.
10

本文引用的文献

1
Surface apposition and multiple cell contacts promote myoblast fusion in Drosophila flight muscles.
J Cell Biol. 2015 Oct 12;211(1):191-203. doi: 10.1083/jcb.201503005.
2
Mechanical tension drives cell membrane fusion.
Dev Cell. 2015 Mar 9;32(5):561-73. doi: 10.1016/j.devcel.2015.01.005. Epub 2015 Feb 12.
3
Myomaker is essential for muscle regeneration.
Genes Dev. 2014 Aug 1;28(15):1641-6. doi: 10.1101/gad.247205.114.
4
Myomaker mediates fusion of fast myocytes in zebrafish embryos.
Biochem Biophys Res Commun. 2014 Sep 5;451(4):480-4. doi: 10.1016/j.bbrc.2014.07.093. Epub 2014 Jul 28.
5
The N-BAR domain protein, Bin3, regulates Rac1- and Cdc42-dependent processes in myogenesis.
Dev Biol. 2013 Oct 1;382(1):160-71. doi: 10.1016/j.ydbio.2013.07.004. Epub 2013 Jul 16.
6
Myomaker is a membrane activator of myoblast fusion and muscle formation.
Nature. 2013 Jul 18;499(7458):301-5. doi: 10.1038/nature12343.
7
Adhesion proteins--an impact on skeletal myoblast differentiation.
PLoS One. 2013 May 6;8(5):e61760. doi: 10.1371/journal.pone.0061760. Print 2013.
8
RNA-guided human genome engineering via Cas9.
Science. 2013 Feb 15;339(6121):823-6. doi: 10.1126/science.1232033. Epub 2013 Jan 3.
9
Multiplex genome engineering using CRISPR/Cas systems.
Science. 2013 Feb 15;339(6121):819-23. doi: 10.1126/science.1231143. Epub 2013 Jan 3.
10
Extracellular annexins and dynamin are important for sequential steps in myoblast fusion.
J Cell Biol. 2013 Jan 7;200(1):109-23. doi: 10.1083/jcb.201207012. Epub 2012 Dec 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验