Suppr超能文献

IDH1R132C突变体在小鼠胆管癌发生中的致癌潜力。

Oncogenic potential of IDH1R132C mutant in cholangiocarcinoma development in mice.

作者信息

Ding Ning, Che Li, Li Xiao-Lei, Liu Yan, Jiang Li-Jie, Fan Biao, Tao Jun-Yan, Chen Xin, Ji Jia-Fu

机构信息

Ning Ding, Li Che, Biao Fan, Jia-Fu Ji, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery, Peking University Cancer Hospital and Institute, Beijing 100142, China.

出版信息

World J Gastroenterol. 2016 Feb 14;22(6):2071-80. doi: 10.3748/wjg.v22.i6.2071.

Abstract

AIM

To investigate whether IDH1R132C mutant in combination with loss of p53 and activated Notch signaling promotes intrahepatic cholangiocarcinoma (ICC) development.

METHODS

We applied hydrodynamic injection and sleeping beauty mediated somatic integration to induce loss of p53 (via shP53), activation of Notch [via intracellular domain of Notch1 (NICD)] and/or overexpression of IDH1R132C mutant together with the sleeping beauty transposase into the mouse liver. Specifically, we co-expressed shP53 and NICD (shP53/NICD, n = 4), shP53 and IDH1R132C (shP53/IDH1R132C, n = 3), NICD and IDH1R132C (NICD/IDH1R132C, n = 4), as well as NICD, shP53 and IDH1R132C (NICD/shP53/IDH1R132C, n = 9) in mice. Mice were monitored for liver tumor development and euthanized at various time points. Liver histology was analyzed by hematoxylin and eosin staining. Molecular features of NICD/shP53/IDH1R132C ICC tumor cells were characterized by Myc tag, Flag tag, Ki-67, p-Erk and p-AKT immunohistochemical staining. Desmoplastic reaction in tumor tissues was studied by Picro-Sirius red staining.

RESULTS

We found that co-expression of shP53/NICD, shP53/IDH1R132C or NICD/IDH1R132C did not lead to liver tumor formation. In striking contrast, co-expression of NICD/shP53/IDH1R132C resulted in ICC development in mice (P < 0.01). The tumors could be identified as early as 12 wk post hydrodynamic injection. Tumors rapidly progressed, and by 18 wk post hydrodynamic injection, multiple cystic lesions could be identified on the liver surface. NICD/shP53/IDH1R132C liver tumors shared multiple histological features of human ICCs, including hyperplasia of irregular glands. Importantly, all tumor cells were positive for the biliary epithelial cell marker cytokeratin 19. Extensive collagen fibers could be visualized in tumor tissues using Sirus red staining, duplicating the desmoplastic reaction observed in human ICC. Tumors were highly proliferative and expressed ectopically injected genes. Together these studies supported that NICD/shP53/IDH1R132C liver tumors were indeed ICCs. Finally, no p-AKT or p-ERK positive staining was observed, suggesting that NICD/shP53/IDH1R132C driven ICC development was independent of AKT/mTOR and Ras/MAPK signaling cascades.

CONCLUSION

We have generated a simple, non-germline murine ICC model with activated Notch, loss of p53 and IDH1R132C mutant. The study supported the oncogenic potential of IDH1R132C.

摘要

目的

研究异柠檬酸脱氢酶1(IDH1)R132C突变联合p53缺失及Notch信号激活是否促进肝内胆管癌(ICC)的发生发展。

方法

我们采用流体动力学注射和睡美人介导的体细胞整合技术,将p53缺失(通过shP53)、Notch激活[通过Notch1细胞内结构域(NICD)]和/或IDH1R132C突变体过表达以及睡美人转座酶共同导入小鼠肝脏。具体而言,我们在小鼠中共表达shP53和NICD(shP53/NICD,n = 4)、shP53和IDH1R132C(shP53/IDH1R132C,n = 3)、NICD和IDH1R132C(NICD/IDH1R132C,n = 4)以及NICD、shP53和IDH1R132C(NICD/shP53/IDH1R132C,n = 9)。监测小鼠肝脏肿瘤的发生发展情况,并在不同时间点实施安乐死。采用苏木精-伊红染色分析肝脏组织学情况。通过Myc标签、Flag标签、Ki-67、磷酸化细胞外信号调节激酶(p-Erk)和磷酸化蛋白激酶B(p-AKT)免疫组化染色对NICD/shP53/IDH1R132C ICC肿瘤细胞的分子特征进行表征。采用天狼星红苦味酸染色研究肿瘤组织中的促纤维增生反应。

结果

我们发现,共表达shP53/NICD、shP53/IDH1R132C或NICD/IDH1R132C均未导致肝脏肿瘤形成。与之形成鲜明对比的是,共表达NICD/shP53/IDH1R132C可导致小鼠发生ICC(P < 0.01)。在流体动力学注射后12周即可发现肿瘤。肿瘤进展迅速,在流体动力学注射后18周,可在肝脏表面发现多个囊性病变。NICD/shP53/IDH1R132C肝脏肿瘤具有人类ICC的多种组织学特征,包括不规则腺体增生。重要的是,所有肿瘤细胞均对胆管上皮细胞标志物细胞角蛋白19呈阳性。使用天狼星红染色可在肿瘤组织中观察到大量胶原纤维,这与在人类ICC中观察到的促纤维增生反应一致。肿瘤具有高度增殖性,并表达异位注射的基因。这些研究共同支持NICD/shP53/IDH1R132C肝脏肿瘤确实为ICC。最后,未观察到p-AKT或p-Erk阳性染色,这表明NICD/shP53/IDH1R132C驱动的ICC发生发展独立于AKT/哺乳动物雷帕霉素靶蛋白(mTOR)和Ras/丝裂原活化蛋白激酶(MAPK)信号级联反应。

结论

我们构建了一种简单的、非种系的具有Notch激活、p53缺失和IDH1R132C突变的小鼠ICC模型。该研究支持IDH1R132C的致癌潜力。

相似文献

1
Oncogenic potential of IDH1R132C mutant in cholangiocarcinoma development in mice.
World J Gastroenterol. 2016 Feb 14;22(6):2071-80. doi: 10.3748/wjg.v22.i6.2071.
2
deletion accelerates mutant /-driven cholangiocarcinoma.
Am J Physiol Gastrointest Liver Physiol. 2020 Mar 1;318(3):G419-G427. doi: 10.1152/ajpgi.00296.2019. Epub 2020 Jan 21.
5
6
IDH mutations in liver cell plasticity and biliary cancer.
Cell Cycle. 2014;13(20):3176-82. doi: 10.4161/15384101.2014.965054.
8
NOTCH-YAP1/TEAD-DNMT1 Axis Drives Hepatocyte Reprogramming Into Intrahepatic Cholangiocarcinoma.
Gastroenterology. 2022 Aug;163(2):449-465. doi: 10.1053/j.gastro.2022.05.007. Epub 2022 May 10.
9
Notch1 Drives the Formation and Proliferation of Intrahepatic Cholangiocarcinoma.
Curr Med Sci. 2019 Dec;39(6):929-937. doi: 10.1007/s11596-019-2125-0. Epub 2019 Dec 16.
10
Notch2 controls hepatocyte-derived cholangiocarcinoma formation in mice.
Oncogene. 2018 Jun;37(24):3229-3242. doi: 10.1038/s41388-018-0188-1. Epub 2018 Mar 16.

引用本文的文献

1
Hydrodynamic Delivery: Characteristics, Applications, and Technological Advances.
Pharmaceutics. 2023 Mar 31;15(4):1111. doi: 10.3390/pharmaceutics15041111.
3
4
The implications of IDH mutations for cancer development and therapy.
Nat Rev Clin Oncol. 2021 Oct;18(10):645-661. doi: 10.1038/s41571-021-00521-0. Epub 2021 Jun 15.
6
Identification of a Pan-Gamma-Secretase Inhibitor Response Signature for Notch-Driven Cholangiocarcinoma.
Hepatology. 2020 Jan;71(1):196-213. doi: 10.1002/hep.30816. Epub 2019 Aug 19.

本文引用的文献

1
Hilar cholangiocarcinoma: expert consensus statement.
HPB (Oxford). 2015 Aug;17(8):691-9. doi: 10.1111/hpb.12450.
2
Genetic heterogeneity in cholangiocarcinoma: a major challenge for targeted therapies.
Oncotarget. 2015 Jun 20;6(17):14744-53. doi: 10.18632/oncotarget.4539.
3
Pathogenesis of cholangiocarcinoma: From genetics to signalling pathways.
Best Pract Res Clin Gastroenterol. 2015 Apr;29(2):233-44. doi: 10.1016/j.bpg.2015.02.002. Epub 2015 Feb 17.
4
Cholangiocarcinoma: molecular pathways and therapeutic opportunities.
Semin Liver Dis. 2014 Nov;34(4):456-64. doi: 10.1055/s-0034-1394144. Epub 2014 Nov 4.
5
Mutant IDH inhibits HNF-4α to block hepatocyte differentiation and promote biliary cancer.
Nature. 2014 Sep 4;513(7516):110-4. doi: 10.1038/nature13441. Epub 2014 Jul 2.
6
Emerging roles of Notch signaling in liver disease.
Hepatology. 2015 Jan;61(1):382-92. doi: 10.1002/hep.27268. Epub 2014 Sep 19.
7
BINGO: targeted therapy for advanced biliary-tract cancer.
Lancet Oncol. 2014 Jul;15(8):778-80. doi: 10.1016/S1470-2045(14)70238-4. Epub 2014 May 19.
8
Activation of β-catenin and Yap1 in human hepatoblastoma and induction of hepatocarcinogenesis in mice.
Gastroenterology. 2014 Sep;147(3):690-701. doi: 10.1053/j.gastro.2014.05.004. Epub 2014 May 14.
9
IDH1 mutations alter citric acid cycle metabolism and increase dependence on oxidative mitochondrial metabolism.
Cancer Res. 2014 Jun 15;74(12):3317-31. doi: 10.1158/0008-5472.CAN-14-0772-T. Epub 2014 Apr 22.
10
Cholangiocarcinoma.
Lancet. 2014 Jun 21;383(9935):2168-79. doi: 10.1016/S0140-6736(13)61903-0. Epub 2014 Feb 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验