Suppr超能文献

ESCRT-II蛋白参与秀丽隐杆线虫肌浆网的形成。

The ESCRT-II proteins are involved in shaping the sarcoplasmic reticulum in C. elegans.

作者信息

Lefebvre Christophe, Largeau Céline, Michelet Xavier, Fourrage Cécile, Maniere Xavier, Matic Ivan, Legouis Renaud, Culetto Emmanuel

机构信息

Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette cedex 91198, France.

Brigham and Women's Hospital, 1 Jimmy Fund Way, Boston, MA 02115, USA.

出版信息

J Cell Sci. 2016 Apr 1;129(7):1490-9. doi: 10.1242/jcs.178467. Epub 2016 Feb 18.

Abstract

The sarcoplasmic reticulum is a network of tubules and cisternae localized in close association with the contractile apparatus, and regulates Ca(2+)dynamics within striated muscle cell. The sarcoplasmic reticulum maintains its shape and organization despite repeated muscle cell contractions, through mechanisms which are still under investigation. The ESCRT complexes are essential to organize membrane subdomains and modify membrane topology in multiple cellular processes. Here, we report for the first time that ESCRT-II proteins play a role in the maintenance of sarcoplasmic reticulum integrity inC. elegans ESCRT-II proteins colocalize with the sarcoplasmic reticulum marker ryanodine receptor UNC-68. The localization at the sarcoplasmic reticulum of ESCRT-II and UNC-68 are mutually dependent. Furthermore, the characterization of ESCRT-II mutants revealed a fragmentation of the sarcoplasmic reticulum network, associated with an alteration of Ca(2+)dynamics. Our data provide evidence that ESCRT-II proteins are involved in sarcoplasmic reticulum shaping.

摘要

肌浆网是由小管和池组成的网络,与收缩装置紧密相连,并调节横纹肌细胞内的Ca(2+)动态变化。尽管肌肉细胞反复收缩,肌浆网仍能通过尚在研究中的机制维持其形状和组织结构。内体分选转运复合体(ESCRT)在多个细胞过程中对组织膜亚结构域和改变膜拓扑结构至关重要。在此,我们首次报道ESCRT-II蛋白在秀丽隐杆线虫中对维持肌浆网完整性发挥作用。ESCRT-II蛋白与肌浆网标记物兰尼碱受体UNC-68共定位。ESCRT-II和UNC-68在肌浆网上的定位相互依赖。此外,对ESCRT-II突变体的特征分析揭示了肌浆网网络的碎片化,这与Ca(2+)动态变化的改变有关。我们的数据提供了证据表明ESCRT-II蛋白参与了肌浆网的塑形。

相似文献

1
The ESCRT-II proteins are involved in shaping the sarcoplasmic reticulum in C. elegans.
J Cell Sci. 2016 Apr 1;129(7):1490-9. doi: 10.1242/jcs.178467. Epub 2016 Feb 18.
4
Genetic dissection of ion currents underlying all-or-none action potentials in C. elegans body-wall muscle cells.
J Physiol. 2011 Jan 1;589(Pt 1):101-17. doi: 10.1113/jphysiol.2010.200683. Epub 2010 Nov 8.
7
Muscle-specific functions of ryanodine receptor channels in Caenorhabditis elegans.
J Cell Sci. 1998 Oct;111 ( Pt 19):2885-95. doi: 10.1242/jcs.111.19.2885.
10
Biochemical Approaches to Studying Caenorhabditis elegans ESCRT Functions In Vitro.
Methods Mol Biol. 2019;1998:189-202. doi: 10.1007/978-1-4939-9492-2_14.

引用本文的文献

1
Post-Transcriptional Modifications of RNA as Regulators of Apoptosis in Glioblastoma.
Int J Mol Sci. 2022 Aug 17;23(16):9272. doi: 10.3390/ijms23169272.
2
YTHDC1-mediated VPS25 regulates cell cycle by targeting JAK-STAT signaling in human glioma cells.
Cancer Cell Int. 2021 Dec 4;21(1):645. doi: 10.1186/s12935-021-02304-0.
3
Pluronic gel-based burrowing assay for rapid assessment of neuromuscular health in C. elegans.
Sci Rep. 2019 Oct 23;9(1):15246. doi: 10.1038/s41598-019-51608-9.
4
Three-Dimensional Surface Rendering of ESCRT Proteins Microscopy Data Using UCSF Chimera Software.
Methods Mol Biol. 2019;1998:149-161. doi: 10.1007/978-1-4939-9492-2_11.
6
ESCRT-dependent cargo sorting at multivesicular endosomes.
Semin Cell Dev Biol. 2018 Feb;74:4-10. doi: 10.1016/j.semcdb.2017.08.020. Epub 2017 Aug 8.
7
Membrane Binding by CHMP7 Coordinates ESCRT-III-Dependent Nuclear Envelope Reformation.
Curr Biol. 2016 Oct 10;26(19):2635-2641. doi: 10.1016/j.cub.2016.07.039. Epub 2016 Sep 8.

本文引用的文献

1
Evidence for a Nonendosomal Function of the Saccharomyces cerevisiae ESCRT-III-Like Protein Chm7.
Genetics. 2015 Dec;201(4):1439-52. doi: 10.1534/genetics.115.178939. Epub 2015 Oct 28.
2
ESCRT-III controls nuclear envelope reformation.
Nature. 2015 Jun 11;522(7555):236-9. doi: 10.1038/nature14503. Epub 2015 Jun 3.
3
Spastin and ESCRT-III coordinate mitotic spindle disassembly and nuclear envelope sealing.
Nature. 2015 Jun 11;522(7555):231-5. doi: 10.1038/nature14408. Epub 2015 Jun 3.
4
Bud-neck scaffolding as a possible driving force in ESCRT-induced membrane budding.
Biophys J. 2015 Feb 17;108(4):833-843. doi: 10.1016/j.bpj.2014.12.040.
6
Surveillance of nuclear pore complex assembly by ESCRT-III/Vps4.
Cell. 2014 Oct 9;159(2):388-401. doi: 10.1016/j.cell.2014.09.012.
7
Polarized release of T-cell-receptor-enriched microvesicles at the immunological synapse.
Nature. 2014 Mar 6;507(7490):118-23. doi: 10.1038/nature12951. Epub 2014 Feb 2.
8
ESCRT machinery is required for plasma membrane repair.
Science. 2014 Feb 28;343(6174):1247136. doi: 10.1126/science.1247136. Epub 2014 Jan 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验