Suppr超能文献

计算精神病学作为从神经科学通向临床应用的桥梁。

Computational psychiatry as a bridge from neuroscience to clinical applications.

作者信息

Huys Quentin J M, Maia Tiago V, Frank Michael J

机构信息

Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zürich and Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland.

Centre for Addictive Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Hospital of Psychiatry, University of Zürich, Zürich, Switzerland.

出版信息

Nat Neurosci. 2016 Mar;19(3):404-13. doi: 10.1038/nn.4238.

Abstract

Translating advances in neuroscience into benefits for patients with mental illness presents enormous challenges because it involves both the most complex organ, the brain, and its interaction with a similarly complex environment. Dealing with such complexities demands powerful techniques. Computational psychiatry combines multiple levels and types of computation with multiple types of data in an effort to improve understanding, prediction and treatment of mental illness. Computational psychiatry, broadly defined, encompasses two complementary approaches: data driven and theory driven. Data-driven approaches apply machine-learning methods to high-dimensional data to improve classification of disease, predict treatment outcomes or improve treatment selection. These approaches are generally agnostic as to the underlying mechanisms. Theory-driven approaches, in contrast, use models that instantiate prior knowledge of, or explicit hypotheses about, such mechanisms, possibly at multiple levels of analysis and abstraction. We review recent advances in both approaches, with an emphasis on clinical applications, and highlight the utility of combining them.

摘要

将神经科学的进展转化为对精神疾病患者的益处面临着巨大挑战,因为这涉及到最复杂的器官——大脑,以及它与同样复杂的环境之间的相互作用。应对如此复杂的情况需要强大的技术。计算精神病学将多种层次和类型的计算与多种类型的数据相结合,以努力增进对精神疾病的理解、预测和治疗。广义而言,计算精神病学包含两种互补的方法:数据驱动和理论驱动。数据驱动的方法将机器学习方法应用于高维数据,以改善疾病分类、预测治疗结果或改进治疗选择。这些方法通常对潜在机制不做假设。相比之下,理论驱动的方法使用模型来实例化关于此类机制的先验知识或明确假设,可能在多个分析和抽象层次上。我们回顾了这两种方法的最新进展,重点是临床应用,并强调了将它们结合起来的实用性。

相似文献

1
Computational psychiatry as a bridge from neuroscience to clinical applications.
Nat Neurosci. 2016 Mar;19(3):404-13. doi: 10.1038/nn.4238.
2
Computational neuroscience approach to biomarkers and treatments for mental disorders.
Psychiatry Clin Neurosci. 2017 Apr;71(4):215-237. doi: 10.1111/pcn.12502. Epub 2017 Mar 27.
3
Machine learning and big data in psychiatry: toward clinical applications.
Curr Opin Neurobiol. 2019 Apr;55:152-159. doi: 10.1016/j.conb.2019.02.006. Epub 2019 Apr 15.
4
Advances in the computational understanding of mental illness.
Neuropsychopharmacology. 2021 Jan;46(1):3-19. doi: 10.1038/s41386-020-0746-4. Epub 2020 Jul 3.
5
Computational Neuroscience Approach to Psychiatry: A Review on Theory-driven Approaches.
Clin Psychopharmacol Neurosci. 2022 Feb 28;20(1):26-36. doi: 10.9758/cpn.2022.20.1.26.
6
Generative models for clinical applications in computational psychiatry.
Wiley Interdiscip Rev Cogn Sci. 2018 May;9(3):e1460. doi: 10.1002/wcs.1460. Epub 2018 Jan 25.
7
[Computational psychiatry : Data-driven vs. mechanistic approaches].
Nervenarzt. 2019 Nov;90(11):1117-1124. doi: 10.1007/s00115-019-00796-w.
8
Translational neuroscience and psychiatry: A conceptual analysis.
J Eval Clin Pract. 2018 Aug;24(4):791-796. doi: 10.1111/jep.12914. Epub 2018 Mar 30.
9
Computational approaches and machine learning for individual-level treatment predictions.
Psychopharmacology (Berl). 2021 May;238(5):1231-1239. doi: 10.1007/s00213-019-05282-4. Epub 2019 May 27.
10
Emerging paradigms in medicine: implications for the future of psychiatry.
Explore (NY). 2007 Sep-Oct;3(5):467-77. doi: 10.1016/j.explore.2007.06.003.

引用本文的文献

1
3
Forward Planning in a Population-Based Alcohol Use Disorder Sample.
Addict Biol. 2025 Aug;30(8):e70072. doi: 10.1111/adb.70072.
4
Transformer-aided dynamic causal model for scalable estimation of effective connectivity.
Imaging Neurosci (Camb). 2024 Sep 23;2. doi: 10.1162/imag_a_00290. eCollection 2024.
5
A Novel Approach-Avoidance Task to Study Decision Making Under Outcome Uncertainty.
bioRxiv. 2025 Jul 17:2025.07.12.663075. doi: 10.1101/2025.07.12.663075.
8
The STRESS-EU database: A European resource of human acute stress studies for the worldwide research community.
Neurosci Appl. 2024 Apr 4;3:104063. doi: 10.1016/j.nsa.2024.104063. eCollection 2024.
10
Prior Expectations of Volatility Following Psychotherapy for Delusions: A Randomized Clinical Trial.
JAMA Netw Open. 2025 Jun 2;8(6):e2517132. doi: 10.1001/jamanetworkopen.2025.17132.

本文引用的文献

1
A Computational Cognitive Biomarker for Early-Stage Huntington's Disease.
PLoS One. 2016 Feb 12;11(2):e0148409. doi: 10.1371/journal.pone.0148409. eCollection 2016.
2
The specificity of Pavlovian regulation is associated with recovery from depression.
Psychol Med. 2016 Apr;46(5):1027-35. doi: 10.1017/S0033291715002597. Epub 2016 Feb 4.
3
Cross-trial prediction of treatment outcome in depression: a machine learning approach.
Lancet Psychiatry. 2016 Mar;3(3):243-50. doi: 10.1016/S2215-0366(15)00471-X. Epub 2016 Jan 21.
4
Charting the landscape of priority problems in psychiatry, part 1: classification and diagnosis.
Lancet Psychiatry. 2016 Jan;3(1):77-83. doi: 10.1016/S2215-0366(15)00361-2. Epub 2015 Nov 11.
5
Deciding How To Decide: Self-Control and Meta-Decision Making.
Trends Cogn Sci. 2015 Nov;19(11):700-710. doi: 10.1016/j.tics.2015.08.013. Epub 2015 Oct 5.
6
The neural bases of emotion regulation.
Nat Rev Neurosci. 2015 Nov;16(11):693-700. doi: 10.1038/nrn4044.
7
Habitual control of goal selection in humans.
Proc Natl Acad Sci U S A. 2015 Nov 10;112(45):13817-22. doi: 10.1073/pnas.1506367112. Epub 2015 Oct 12.
8
Bayesian neural adjustment of inhibitory control predicts emergence of problem stimulant use.
Brain. 2015 Nov;138(Pt 11):3413-26. doi: 10.1093/brain/awv246. Epub 2015 Sep 3.
9
Arithmetic and local circuitry underlying dopamine prediction errors.
Nature. 2015 Sep 10;525(7568):243-6. doi: 10.1038/nature14855. Epub 2015 Aug 31.
10
Translational Perspectives for Computational Neuroimaging.
Neuron. 2015 Aug 19;87(4):716-32. doi: 10.1016/j.neuron.2015.07.008.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验